Skip to main content

Light-Induced mRNA Transfection

  • Protocol
  • First Online:
Book cover Synthetic Messenger RNA and Cell Metabolism Modulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 969))

Abstract

mRNA-based transfection is an attractive strategy for manipulation of gene expression for gain-of-function studies and therapeutic applications. As a potential therapeutic regulator, mRNA transfection has mainly been hampered by poor delivery strategies, combined with lack of specific targeting to the intended tissue(s) or cells. In this chapter, we describe a protocol for light-induced mRNA transfection into human cancer cell lines with the benefit for time- and site-specific mRNA targeting. Light-induced mRNA transfection is achieved by delivering mRNA molecules into endosomal and lysosomal vesicles. Subsequently, a photosensitizer (PS) localized in the membranes of these vesicles is used to induce damage, resulting in release of mRNA molecules into the cytosol. The main benefit of the strategy proposed is the possibility for protein production from the delivered mRNA in a way that is controllable in a time- and site-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ejeskar K, Krona C, Caren H, Zaibak F, Li L, Martinsson T, Ioannou PA (2005) Introduction of in vitro transcribed ENO1 mRNA into neuroblastoma cells induces cell death. BMC Cancer 5:161

    Article  PubMed  Google Scholar 

  2. Lu D, Benjamin R, Kim M, Conry RM, Curiel DT (1994) Optimization of methods to achieve mRNA-mediated transfection of tumor cells in vitro and in vivo employing cationic liposome vectors. Cancer Gene Ther 1:245–252

    PubMed  CAS  Google Scholar 

  3. Kariko K, Kuo A, Barnathan E (1999) Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther 6:1092–1100

    Article  PubMed  CAS  Google Scholar 

  4. Felgner PL, Ringold GM (1989) Cationic liposome-mediated transfection. Nature 337:387–388

    Article  PubMed  CAS  Google Scholar 

  5. Malone RW, Felgner PL, Verma IM (1989) Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci USA 86:6077–6081

    Article  PubMed  CAS  Google Scholar 

  6. Hecker JG, Hall LL, Irion VR (2001) Nonviral gene delivery to the lateral ventricles in rat brain: initial evidence for widespread distribution and expression in the central nervous system. Mol Ther 3:375–384

    Article  PubMed  CAS  Google Scholar 

  7. Fisher KJ, Wilson JM (1997) The transmembrane domain of diphtheria toxin improves molecular conjugate gene transfer. Biochem J 321(Pt 1):49–58

    PubMed  CAS  Google Scholar 

  8. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16:364–369

    Article  PubMed  CAS  Google Scholar 

  9. Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW (2001) Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res 29:3882–3891

    Article  PubMed  CAS  Google Scholar 

  10. Shiraishi T, Pankratova S, Nielsen PE (2005) Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides. Chem Biol 12:923–929

    Article  PubMed  CAS  Google Scholar 

  11. Dalluge R, Haberland A, Zaitsev S, Schneider M, Zastrow H, Sukhorukov G, Bottger M (2002) Characterization of structure and mechanism of transfection-active peptide-DNA complexes. Biochim Biophys Acta 1576:45–52

    Article  PubMed  CAS  Google Scholar 

  12. Ciftci K, Levy RJ (2001) Enhanced plasmid DNA transfection with lysosomotropic agents in cultured fibroblasts. Int J Pharm 218:81–92

    Article  PubMed  CAS  Google Scholar 

  13. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  PubMed  CAS  Google Scholar 

  14. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  PubMed  CAS  Google Scholar 

  15. Berg K, Selbo PK, Prasmickaite L, Tjelle TE, Sandvig K, Moan J, Gaudernack G, Fodstad O, Kjolsrud S, Anholt H, Rodal GH, Rodal SK, Hogset A (1999) Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res 59:1180–1183

    PubMed  CAS  Google Scholar 

  16. Boe S, Saeboe-Larssen S, Hovig E (2010) Light-induced gene expression using messenger RNA molecules. Oligonucleotides 20:1–6

    Article  PubMed  CAS  Google Scholar 

  17. Boe S, Longva AS, Hovig E (2007) Photochemically induced gene silencing using small interfering RNA molecules in combination with lipid carriers. Oligonucleotides 17:166–173

    Article  PubMed  CAS  Google Scholar 

  18. Boe S, Longva AS, Hovig E (2008) Evaluation of various polyethylenimine formulations for light-controlled gene silencing using small interfering RNA molecules. Oligonucleotides 18:23–32

    Article  Google Scholar 

  19. Boe SL, Longva AS, Hovig E (2010) Cyclodextrin-containing polymer delivery system for light-directed siRNA gene silencing. Oligonucleotides 20:175–182

    Article  PubMed  CAS  Google Scholar 

  20. Saeboe-Larssen S, Fossberg E, Gaudernack G (2002) mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J Immunol Methods 259:191–203

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigurd Leinæs Bøe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bøe, S.L., Hovig, E. (2013). Light-Induced mRNA Transfection. In: Rabinovich, P. (eds) Synthetic Messenger RNA and Cell Metabolism Modulation. Methods in Molecular Biology, vol 969. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-260-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-260-5_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-259-9

  • Online ISBN: 978-1-62703-260-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics