Skip to main content
Book cover

Dopamine pp 43–60Cite as

Capture of D2 Dopamine Receptor Signaling Complexes in Striatal Cells for Mass Spectrometry Proteomic Analysis

  • Protocol
  • First Online:
  • 2310 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 964))

Abstract

In recent years advancements in proteomic techniques have contributed to the understanding of protein interaction networks (Interactomes) in various cell types. Today, high throughput proteomics promises to define virtually all of the components of a signaling and a regulatory network within cells for various molecules including membrane-spanning receptors. The D2 dopamine receptor (D2R) is a primary mediator of dopamine transmission in the brain. Signaling through D2Rs has been linked to dopamine-mediated effects on motivation, reward, locomotion and addiction to drugs of abuse. In the striatum, the D2R is a key mediatory of dopamine transmission. Actions on this receptor are an important pharmacological property of various drugs including typical antipsychotics and drugs of abuse. Here we provide an approach for the identification protein interaction networks of the D2R within striatal cells. We discuss key assays and techniques, such as cellular membrane protein fractionation, western blot analysis, magnetic bead coimmunoprecipitation, and liquid chromatography electrospray ionization (LC-ESI) mass spectrometry, that can be used for the isolation and characterization of D2R protein interaction networks. This approach presents a reliable method for the identification and characterization of D2R signaling within cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Missale C, Russel N, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  2. Sidhu A, Niznik HB (2000) Coupling of dopamine receptor subtypes to multiple and diverse G proteins. Int J Dev Neurosci 18:669–677

    Article  PubMed  CAS  Google Scholar 

  3. Binda AV, Kabbani N, Levenson R (2005) Regulation of dense core vesicle release from PC12 cells by interaction between the D2 dopamine receptor and calcium-dependent activator protein for secretion (CAPS). Biochem Pharmacol 69:1451–1461

    Article  PubMed  CAS  Google Scholar 

  4. Goldman-Rakic PS (1998) The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42:707–711

    Article  PubMed  CAS  Google Scholar 

  5. Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  PubMed  CAS  Google Scholar 

  6. Strange PG (2001) Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacol Rev 53:119–133

    PubMed  CAS  Google Scholar 

  7. Obidiah J, Avidor-Reiss T, Fishburn CS, Carmon S, Bayewitch M, Vogel Z, Fuchs S, Levavi-Sivan B (1999) Adenylyl cyclase interaction with the D2 dopamine receptor family; differential coupling to Gi, Gz, and Gs. Cell Mol Neurobiol 19:653–664

    Article  Google Scholar 

  8. Neve KA, Seamans JK, Trantham-Davidson H (2004) Dopamine receptor signaling. J Recept Signal Transduct Res 24:165–205

    Article  PubMed  CAS  Google Scholar 

  9. Kabbani N, Levenson R (2007) A proteomic approach to receptor signaling: molecular mechanisms and therapeutic implications derived from discovery of the dopamine D2 receptor signalplex. Eur J Pharmacol 572:83–93

    Article  PubMed  CAS  Google Scholar 

  10. Bertorello AM, Hopfield JF, Aperia A, Greengard P (1990) Inhibition by dopamine of (Na+  +  K+) ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature 347:386–388

    Article  PubMed  CAS  Google Scholar 

  11. Bergson C, Levenson R, Goldman-Rakic PS, Lidow MS (2003) Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling. Trends Pharmacol Sci 24:486–492

    Article  PubMed  CAS  Google Scholar 

  12. Downard KM (2006) Ions of the interactome: the role of MS in the study of protein interactions in proteomics and structural biology. Proteomics 6:5374–5384

    Article  PubMed  CAS  Google Scholar 

  13. Baerenfaller K, Grossman J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossninklaus U, Gruissem W, Baginsky S (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320:938–941

    Article  PubMed  CAS  Google Scholar 

  14. Hinkson IV, Joshua EE (2011) The dynamic state of protein turnover: it’s about time. Trends Cell Biol 21(5):293–303

    Article  PubMed  CAS  Google Scholar 

  15. Santos SD, Manadas B, Duarte CB, Carvalho AL (2010) Proteomic analysis of an interactome for long-form AMPA receptor subunits. J Proteome Res 9:1670–1682

    Article  PubMed  CAS  Google Scholar 

  16. Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, Yates JR 3rd, Lefkowitz RJ (2007) Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci U S A 104:12011–12016

    Article  PubMed  CAS  Google Scholar 

  17. Free RB, Hazelwook LA, Cabrera DM, Spalding HN, Namkung Y, Rankin ML, Sibley DR (2007) D1 and D2 dopamine receptor expression is regulated by direct interaction with the chaperone protein calnexin. J Biol Chem 282:21285–21300

    Article  PubMed  CAS  Google Scholar 

  18. Bradford MM (1976) Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  19. Ollom CM, Denny JB (2008) A crosslinking analysis of GAP-43 interactions with other proteins in differentiated N1E-115 cells. Int J Mol Sci 9:1753–1771

    Article  PubMed  CAS  Google Scholar 

  20. Thomas DDH, Taft WB, Kaspar KM, Groblewski GE (2001) CRHSP-28 regulates Ca2+ stimulated secretion in permeabilized acinar cells. J Biol Chem 276:28866–28872

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Kabbani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kabbani, N., Nordman, J.C. (2013). Capture of D2 Dopamine Receptor Signaling Complexes in Striatal Cells for Mass Spectrometry Proteomic Analysis. In: Kabbani, N. (eds) Dopamine. Methods in Molecular Biology, vol 964. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-251-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-251-3_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-250-6

  • Online ISBN: 978-1-62703-251-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics