Skip to main content

Acetylation of Endogenous STAT Proteins

  • Protocol
  • First Online:
JAK-STAT Signalling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 967))

Abstract

Acetylation of signal transducer and activator of transcription (STAT) proteins has been recognized as a significant mechanism for the regulation of their cellular functions. Site-specific antibodies are available only for a minority of STATs. The detection of acetylated STATs by immunoprecipitation (IP) followed by western blot (WB) will be described in the following chapter. Defined conditions for cell lysis and IP will be elucidated on the basis of STAT1 acetylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318

    Article  PubMed  CAS  Google Scholar 

  2. Buchwald M, Krämer OH, Heinzel T (2009) HDACi–targets beyond chromatin. Cancer Lett 280(2):160–167

    Article  PubMed  CAS  Google Scholar 

  3. Spange S et al (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41(1):185–198

    Article  PubMed  CAS  Google Scholar 

  4. Krämer OH (2009) HDAC2: a critical factor in health and disease. Trends Pharmacol Sci 30(12):647–655

    Article  PubMed  Google Scholar 

  5. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784

    Article  PubMed  CAS  Google Scholar 

  6. Sakuma T et al (2006) Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. Int J Oncol 29(1):117–124

    PubMed  CAS  Google Scholar 

  7. Wilson AJ et al (2006) Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281(19):13548–13558

    Article  PubMed  CAS  Google Scholar 

  8. Müller S, Krämer OH (2010) Inhibitors of HDACs–effective drugs against cancer? Curr Cancer Drug Targets 10(2):210–228

    Article  PubMed  Google Scholar 

  9. Bradner JE et al (2010) Chemical phylogenetics of histone deacetylases. Nat Chem Biol 6(3):238–243

    Article  PubMed  CAS  Google Scholar 

  10. Bitterman KJ et al (2002) Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277(47):45099–45107

    Article  PubMed  CAS  Google Scholar 

  11. Krämer OH et al (2006) Acetylation of Stat1 modulates NF-kappaB activity. Genes Dev 20(4):473–485

    Article  PubMed  Google Scholar 

  12. Reich NC (2007) STAT dynamics. Cytokine Growth Factor Rev 18(5–6):511–518

    Article  PubMed  CAS  Google Scholar 

  13. Mertens C, Darnell JE Jr (2007) SnapShot: JAK-STAT signaling. Cell 131(3):612

    Article  PubMed  CAS  Google Scholar 

  14. Hu X, Ivashkiv LB (2009) Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31(4):539–550

    Article  PubMed  CAS  Google Scholar 

  15. Kim HS, Lee MS (2007) STAT1 as a key modulator of cell death. Cell Signal 19(3):454–465

    Article  PubMed  CAS  Google Scholar 

  16. Yuan ZL et al (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307(5707):269–273

    Article  PubMed  CAS  Google Scholar 

  17. Ray S, Boldogh I, Brasier AR (2005) STAT3 NH2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen. Gastroenterology 129(5):1616–1632

    Article  PubMed  CAS  Google Scholar 

  18. Cudejko C et al (2011) p16INK4a-deficiency promotes IL-4-induced polarization and inhibits pro-inflammatory signaling in macrophages. Blood 118(9):2556–2566

    Article  PubMed  CAS  Google Scholar 

  19. Stronach EA et al (2011) HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer. Cancer Res 71(13):4412–4422

    Article  PubMed  CAS  Google Scholar 

  20. Guo L et al (2007) Stat1 acetylation inhibits inducible nitric oxide synthase expression in interferon-gamma-treated RAW264.7 murine macrophages. Surgery 142(2):156–162

    Article  PubMed  Google Scholar 

  21. Hayashi T et al (2007) IFN-gamma protects cerulein-induced acute pancreatitis by repressing NF-kappa B activation. J Immunol 178(11):7385–7394

    PubMed  CAS  Google Scholar 

  22. Krämer OH et al (2009) A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev 23(2):223–235

    Article  PubMed  Google Scholar 

  23. Tang X et al (2007) Acetylation-dependent signal transduction for type I interferon receptor. Cell 131(1):93–105

    Article  PubMed  CAS  Google Scholar 

  24. Ginter T et al (2012) Histone deacetylase inhibitors block IFNgamma-induced STAT1 phosphorylation. Cell Signal 24(7):1453–1460

    Article  PubMed  CAS  Google Scholar 

  25. Genin P, Morin P, Civas A (2003) Impairment of interferon-induced IRF-7 gene expression due to inhibition of ISGF3 formation by trichostatin A. J Virol 77(12):7113–7119

    Article  PubMed  CAS  Google Scholar 

  26. Sakamoto S, Potla R, Larner AC (2004) Histone deacetylase activity is required to recruit RNA polymerase II to the promoters of selected interferon-stimulated early response genes. J Biol Chem 279(39):40362–40367

    Article  PubMed  CAS  Google Scholar 

  27. Nusinzon I, Horvath CM (2003) Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc Natl Acad Sci USA 100(25):14742–14747

    Article  PubMed  CAS  Google Scholar 

  28. Chang HM et al (2004) Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc Natl Acad Sci U S A 101(26):9578–9583

    Article  PubMed  CAS  Google Scholar 

  29. Klampfer L et al (2004) Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem 279(29):30358–30368

    Article  PubMed  CAS  Google Scholar 

  30. Klampfer L et al (2003) Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol Cancer Res 1(11):855–862

    PubMed  CAS  Google Scholar 

  31. Krämer OH, Heinzel T (2010) Phosphorylation-acetylation switch in the regulation of STAT1 signaling. Mol Cell Endocrinol 315(1–2):40–48

    Article  PubMed  Google Scholar 

  32. Dormeyer W, Ott M, Schnolzer M (2005) Probing lysine acetylation in proteins: strategies, limitations, and pitfalls of in vitro acetyltransferase assays. Mol Cell Proteomics 4(9):1226–1239

    Article  PubMed  CAS  Google Scholar 

  33. Hay RT (2005) SUMO: a history of modification. Mol Cell 18(1):1–12

    Article  PubMed  CAS  Google Scholar 

  34. Choudhary C et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840

    Article  PubMed  CAS  Google Scholar 

  35. Sonnemann J et al (2010) Serine proteases in histone deacetylase inhibitor-induced apoptosis. Mol Cancer Ther 9(8):2440–2441, author reply 2441–2

    Article  PubMed  CAS  Google Scholar 

  36. Li M et al (2002) Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem 277(52):50607–50611

    Article  PubMed  CAS  Google Scholar 

  37. Wang R, Cherukuri P, Luo J (2005) Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem 280(12):11528–11534

    Article  PubMed  CAS  Google Scholar 

  38. Nie Y et al (2009) STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat Cell Biol 11(4):492–500

    Article  PubMed  CAS  Google Scholar 

  39. Nadiminty N et al (2006) Stat3 activation of NF-{kappa}B p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci U S A 103(19):7264–7269

    Article  PubMed  CAS  Google Scholar 

  40. Ma L et al (2010) Acetylation modulates prolactin receptor dimerization. Proc Natl Acad Sci U S A 107(45):19314–19319

    Article  PubMed  CAS  Google Scholar 

  41. Shankaranarayanan P et al (2001) Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. J Biol Chem 276(46):42753–42760

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver H. Krämer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ginter, T., Heinzel, T., Krämer, O.H. (2013). Acetylation of Endogenous STAT Proteins. In: Nicholson, S., Nicola, N. (eds) JAK-STAT Signalling. Methods in Molecular Biology, vol 967. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-242-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-242-1_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-241-4

  • Online ISBN: 978-1-62703-242-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics