Skip to main content

Identification of Spinally Projecting Neurons in the Rostral Ventrolateral Medulla In Vivo

  • Protocol
  • First Online:
  • 1312 Accesses

Part of the book series: Neuromethods ((NM,volume 78))

Abstract

Putative sympathetic premotor neurons in the rostral ventrolateral medulla are critically important in the regulation of sympathetic vasomotor tone and are responsible for mediating many cardiovascular reflexes. In the rat, these neurons lie within a small area of the brainstem immediately caudal to the facial nucleus and can be distinguished from neighbouring cells by their axonal projections to the thoracic spinal cord, where they are thought to form synapses with sympathetic preganglionic neurons.

This protocol describes the steps required for identification of sympathetic premotor neurons in acute experiments in vivo. It provides a detailed description of the methodology we use routinely to electrophysiologically map the topography of the facial nucleus and an account of the steps needed to conduct the antidromic collision test.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dittmar C (1870) Ein Neuer Beweis fur die Reizbarkeit der centripetalen Fasern des Ruckenmarks. J Sachs Ges Wiss Mathematischphysiche Klasse 22:18

    Google Scholar 

  2. Dittmar C (1873) Uber die Lage des sogenannten Gefasscentrums der Medulla oblongata. J Sachs Ges Wiss Mathematischphysiche Klasse 25:449–469

    Google Scholar 

  3. Owsjannikow P (1871) Die tonischen und reflektorischen centren der Gefassnerven. J Sachs Ges Wiss Mathematischphysiche Klasse 23:135–147

    Google Scholar 

  4. Guertzenstein PG, Silver A (1974) Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J Physiol 242:489–503

    PubMed  CAS  Google Scholar 

  5. Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Fernandez-Pardal J, Saavedra JM, Reis DJ (1984) Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci 4:474–494

    PubMed  CAS  Google Scholar 

  6. Ross CA, Ruggiero DA, Joh TH, Park DH, Reis DJ (1984) Rostral ventrolateral medulla: selective projections to the thoracic autonomic cell column from the region containing C1 adrenaline neurons. J Comp Neurol 228:168–185

    Article  PubMed  CAS  Google Scholar 

  7. Blessing WW, Goodchild AK, Dampney RA, Chalmers JP (1981) Cell groups in the lower brain stem of the rabbit projecting to the spinal cord, with special reference to catecholamine-containing neurons. Brain Res 221:35–55

    Article  PubMed  CAS  Google Scholar 

  8. Brown DL, Guyenet PG (1984) Cardiovascular neurons of brain stem with projections to spinal cord. Am J Physiol 247:R1009–1016

    PubMed  CAS  Google Scholar 

  9. Brown DL, Guyenet PG (1985) Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ Res 56:359–369

    Article  PubMed  CAS  Google Scholar 

  10. Abbott SB, Stornetta RL, Fortuna MG, Depuy SD, West GH, Harris TE, Guyenet PG (2009) Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats. J Neurosci 29:5806–5819

    Article  PubMed  CAS  Google Scholar 

  11. Berkowitz RG, Chalmers J, Sun QJ, Pilowsky P (1999) Identification of posterior cricoarytenoid motoneurons in the rat. Ann Otol Rhinol Laryngol 108:1033–1041

    PubMed  CAS  Google Scholar 

  12. Pilowsky PM, Jiang C, Lipski J (1990) An intracellular study of respiratory neurons in the rostral ventrolateral medulla of the rat and their relationship to catecholamine-containing neurons. J Comp Neurol 301:604–617

    Article  PubMed  CAS  Google Scholar 

  13. Verberne AJ, Stornetta RL, Guyenet PG (1999) Properties of C1 and other ventrolateral medullary neurones with hypothalamic projections in the rat. J Physiol 517(Pt 2):477–494

    Article  PubMed  CAS  Google Scholar 

  14. Sartor DM, Verberne AJM (2003) Phenotypic identification of rat rostroventrolateral medullary presympathetic vasomotor neurons inhibited by exogenous cholecystokinin. J Comp Neurol 465:467–479

    Article  PubMed  CAS  Google Scholar 

  15. Sartor DM, Verberne AJ (2010) Gastric leptin: a novel role in cardiovascular regulation. Am J Physiol Heart Circ Physiol 298:H406–414

    Article  PubMed  CAS  Google Scholar 

  16. Verberne AJ, Sartor DM (2010) Rostroventrolateral medullary neurons modulate glucose homeostasis in the rat. Am J Physiol Endocrinol Metab 299:E802–807

    Article  PubMed  CAS  Google Scholar 

  17. Biscoe TJ, Sampson SR (1970) Field potentials evoked in the brain stem of the cat by stimulation of the carotid sinus, glossopharyngeal, aortic and superior laryngeal nerves. J Physiol 209:341–358

    PubMed  CAS  Google Scholar 

  18. Riddell JS, Hadian M (2000) Field potentials generated by group II muscle afferents in the lower-lumbar segments of the feline spinal cord. J Physiol 522(Pt 1):97–108

    Article  PubMed  CAS  Google Scholar 

  19. Lipski J (1981) Antidromic activation of neurons as an analytic tool in the study of the central nervous system. J Neurosci Methods 4:1–32

    Article  PubMed  CAS  Google Scholar 

  20. Serra J, Campero M, Ochoa J, Bostock H (1999) Activity-dependent slowing of conduction differentiates functional subtypes of C fibres innervating human skin. J Physiol 515(Pt 3):799–811

    Article  PubMed  CAS  Google Scholar 

  21. Gee MD, Lynn B, Cotsell B (1996) Activity-dependent slowing of conduction velocity provides a method for identifying different functional classes of C-fibre in the rat saphenous nerve. Neuroscience 73:667–675

    Article  PubMed  CAS  Google Scholar 

  22. Fang X, McMullan S, Lawson SN, Djouhri L (2005) Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurones in the rat in vivo. J Physiol 565:927–943

    Article  PubMed  CAS  Google Scholar 

  23. Morrison SF, Milner TA, Reis DJ (1988) Reticulospinal vasomotor neurons of the rat rostral ventrolateral medulla: relationship to sympathetic nerve activity and the C1 adrenergic cell group. J Neurosci 8:1286–1301

    PubMed  CAS  Google Scholar 

  24. Kanjhan R, Lipski J, Kruszewska B, Rong W (1995) A comparative study of pre-sympathetic and Botzinger neurons in the rostral ventrolateral medulla (RVLM) of the rat. Brain Res 699:19–32

    Article  PubMed  CAS  Google Scholar 

  25. McMullan S, Pathmanandavel K, Pilowsky PM, Goodchild AK (2008) Somatic nerve stimulation evokes qualitatively different somatosympathetic responses in the cervical and splanchnic sympathetic nerves in the rat. Brain Res 1217:139–147

    Article  PubMed  CAS  Google Scholar 

  26. Lidierth M (2005) Pulser: user-friendly, graphical user-interface based software for controlling stimuli during data acquisition with Spike2 for Windows. J Neurosci Methods 141:243–250

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon McMullan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

McMullan, S. (2013). Identification of Spinally Projecting Neurons in the Rostral Ventrolateral Medulla In Vivo. In: Pilowsky, P., Farnham, M., Fong, A. (eds) Stimulation and Inhibition of Neurons. Neuromethods, vol 78. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-233-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-233-9_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-232-2

  • Online ISBN: 978-1-62703-233-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics