Skip to main content

Transgenic Cotton: From Biotransformation Methods to Agricultural Application

  • Protocol
  • First Online:
Transgenic Cotton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 958))

Abstract

Transgenic cotton is among the first transgenic plants commercially adopted around the world. Since it was first introduced into the field in the middle of 1990s, transgenic cotton has been quickly adopted by cotton farmers in many developed and developing countries. Transgenic cotton has offered many important environmental, social, and economic benefits, including reduced usage of pesticides, indirect increase of yield, minimizing environmental pollution, and reducing labor and cost. Agrobacterium-mediated genetic transformation method is the major method for obtaining transgenic cotton. However, pollen tube pathway-mediated method is also used, particularly by scientists in China, to breed commercial transgenic cotton. Although transgenic cotton plants with disease-resistance, abiotic stress tolerance, and improved fiber quality have been developed in the past decades, insect-resistant and herbicide-tolerant cotton are the two dominant transgenic cottons in the transgenic cotton market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephens SG, Mosley ME (1974) Early domesticated cottons from archaeological sites in central coastal. Peru Am Antiquity 39:109–122

    Article  Google Scholar 

  2. Zhang BH, Feng R (2000) Cotton resistance to insect and pest-resistant cotton. Chinese Agricultural Science and Technology Press, Beijing

    Google Scholar 

  3. IAC (1996) Cotton: review of world situation. Monogram by International Advisory Committee, Washington, DC

    Google Scholar 

  4. Firoozabady E, Deboer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116

    Article  CAS  Google Scholar 

  5. Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio-Technology 5:263–266

    CAS  Google Scholar 

  6. Divya K, Anuradha TS, Jami SK, Kirti PB (2008) Efficient regeneration from hypocotyl explants in three cotton cultivars. Biologia Plantarum 52:201–208

    Article  CAS  Google Scholar 

  7. Han GY, Wang XF, Zhang GY, Ma ZY (2009) Somatic embryogenesis and plant regeneration of recalcitrant cottons (Gossypium hirsutum). Afr J Biotechnol 8:432–437

    CAS  Google Scholar 

  8. Hussain SS, Rao AQ, Husnain T, Riazuddin S (2009) Cotton somatic embryo morphology affects its conversion to plant. Biologia Plantarum 53:307–311

    Article  CAS  Google Scholar 

  9. Khan T, Singh AK, Pant RC (2006) Regeneration via somatic embryogenesis and organogenesis in different cultivars of cotton (Gossypium spp.). Vitro Cell Develop Biol Plant 42:498–501

    Article  CAS  Google Scholar 

  10. Kouakou TH, Waffo-Teguo P, Kouadio YJ, Valls J, Richard T, Decendit A, Merillon J-M (2007) Phenolic compounds and somatic embryogenesis in cotton (Gossypium hirsutum L.). Plant Cell Tissue Organ Cult 90:25–29

    Article  CAS  Google Scholar 

  11. Wang J, Sun Y, Yan S, Daud MK, Zhu S (2008) High frequency plant regeneration from protoplasts in cotton via somatic embryogenesis. Biol Plantarum 52:616–620

    Article  CAS  Google Scholar 

  12. Zhang B, Wang Q, Liu F, Wang K, Frazier TP (2009) Highly efficient plant regeneration through somatic embryogenesis in 20 elite commercial cotton (Gossypium hirsutum L.) cultivars. Plant Omics 2:259–268

    CAS  Google Scholar 

  13. Aydin Y, Talas-Ogras T, Ipekci-Altas Z, Gozukirmizi N (2006) Effects of brassinosteroid on cotton regeneration via somatic embryogenesis. Biologia 61:289–293

    Article  CAS  Google Scholar 

  14. Ikram-ul H, Zafar Y (2004) High frequency of callus induction, its proliferation and somatic embryogenesis in cotton (Gossypium hirsutum L.). J Plant Biotechnol 6:55–61

    Google Scholar 

  15. Mishra R, Wang HY, Yadav NR, Wilkins TA (2003) Development of a highly regenerable elite Acala cotton (Gossypium hirsutum cv. Maxxa) – a step towards genotype-independent regeneration. Plant Cell Tissue Organ Cult 73:21–35

    Article  CAS  Google Scholar 

  16. Rao AQ, Hussain SS, Shahzad MS, Bokhari SYA, Raza MH, Rakha A, Majeed A, Shahid AA, Saleem Z, Husnain T, Riazuddin S (2006) Somatic embryogenesis in wild relatives of cotton (Gossypium spp.). J Zhejiang Univ Sci 7:291–298

    Article  Google Scholar 

  17. Sakhanokho HF, Ozias-Akins P, May OL, Chee PW (2004) Induction of somatic embryogenesis and plant regeneration in select Georgia and pee dee cotton lines. Crop Sci 44:2199–2205

    Article  Google Scholar 

  18. Sun YQ, Zhang XL, Huang C, Guo XP, Nie YC (2006) Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species. Plant Cell Rep 25:289–296

    Article  PubMed  CAS  Google Scholar 

  19. Sun YQ, Zhang XL, Huang C, Nie YC, Guo XP (2005) Factors influencing in vitro regeneration from protoplasts of wild cotton (G-klotzschianum A) and RAPD analysis of regenerated plantlets. Plant Growth Regul 46:79–86

    Article  CAS  Google Scholar 

  20. Wu JH, Zhang XL, Nie YC, Jin SX, Liang SG (2004) Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons (Gossypium hirsutum L.). Vitro Cell Develop Biol Plant 40:371–375

    Article  CAS  Google Scholar 

  21. Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK, Leelavathi S (2003) High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Rep 21:635–639

    PubMed  CAS  Google Scholar 

  22. Sakhanokho HF, Zipf A, Raiasekaran K, Saha S, Sharma GC (2001) Induction of highly embryogenic calli and plant regeneration in upland (Gossypium hirsutum L.) and pima (Gossypium barbadense L.) cottons. Crop Sci 41:1235–1240

    Article  Google Scholar 

  23. Zhang BH, Feng R, Liu F, Wang QL (2001) High frequency somatic embryogenesis and plant regeneration of an elite Chinese cotton variety. Bot Bull Acad Sin 42:9–16

    Google Scholar 

  24. Zhang BH, Feng R, Liu F, Yao CB (1999) Direct induction of cotton somatic embryogenesis. Chinese Sci Bull 44:766–767

    Article  Google Scholar 

  25. Zhang BH, Feng R, Liu F, Zhou DY, Wang QL (2001) Direct somatic embryogenesis and plant regeneration from cotton (Gossypium hirsutum L.) explants. Israel J Plant Sci 49:193–196

    Article  CAS  Google Scholar 

  26. Gonzalez-Benito ME, Carvalho JMFC, Perez C (1997) Cotton (Gossypium hirsutum L.) somatic embryogenesis: a comparative study between two cultivars. Phytomorphology 47:375–382

    Google Scholar 

  27. Hemphill JK, Maier CGA, Chapman KD (1998) Rapid in-vitro plant regeneration of cotton (Gossypium hirsutum L.). Plant Cell Rep 17:273–278

    Article  CAS  Google Scholar 

  28. Rajasegar G, Rangasamy SRS, Venkatachalam P, Rao GR (1996) Callus induction, somatic embryoid formation and plant regeneration in cotton (Gossypium hirsutum L.). J Phytol Res 9:145–147

    CAS  Google Scholar 

  29. Trolinder NL, Goodin JR (1987) Somatic embryogenesis and plant-regeneration in cotton (Gossypium-hirsutum-L). Plant Cell Rep 6:231–234

    Article  CAS  Google Scholar 

  30. Trolinder NL, Goodin JR (1988) Somatic embryogenesis in cotton (Gossypium). 1. Effects of source of explant and hormone regime. Plant Cell Tissue Organ Cult 12:31–42

    Article  CAS  Google Scholar 

  31. Trolinder NL, Goodin JR (1988) Somatic embryogenesis in cotton (Gossypium). 2. Requirements for embryo development and plant-regeneration. Plant Cell Tissue Organ Cult 12:43–53

    Article  CAS  Google Scholar 

  32. Voo KS, Rugh CL, Kamalay JC (1991) Indirect somatic embryogenesis and plant recovery from cotton Gossypium-hirsutum L. Vitro Cell Develop Biol Plant 27P:117–124

    Article  Google Scholar 

  33. Zhang BH, Feng R, Li XH, Li FL (1996) Anther culture and plant regeneration of cotton (Gossypium klotzschianum Anderss). Chinese Sci Bull 41:145–148

    Google Scholar 

  34. Gelvin SB (2003) Agobacterium-mediated plant transformation: the biology behind the “gene-Jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed  CAS  Google Scholar 

  35. Firoozabady E, Deboer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116

    Article  CAS  Google Scholar 

  36. Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio-Technology 5:263–266

    CAS  Google Scholar 

  37. Asad S, Mukhtar Z, Nazir F, Hashmi JA, Mansoor S, Zafar Y, Arshad M (2008) Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) and regeneration of salt tolerant plants. Mol Biotechnol 40:161–169

    Article  PubMed  CAS  Google Scholar 

  38. Chen TZ, Wu SJ, Zhao J, Guo WZ, Zhang TZ (2010) Pistil drip following pollination: a simple in planta Agrobacterium-mediated transformation in cotton. Biotechnol Lett 32:547–555

    Article  CAS  Google Scholar 

  39. Hashmi JA, Zafar Y, Arshad M, Mansoor S, Asad S (2011) Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes 42:286–296

    Article  PubMed  CAS  Google Scholar 

  40. Katageri IS, Vamadevaiah HM, Udikeri SS, Khadi BM, Kumar PA (2007) Genetic transformation of an elite Indian genotype of cotton (Gossypium hirsutum L.) for insect resistance. Curr Sci 93:1843–1847

    CAS  Google Scholar 

  41. Kim HJ, Murai N, Fang DD, Triplett BA (2009) Functional analysis of Gossypium hirsutum cellulose synthase catalytic subunit 4 promoter in transgenic Arabidopsis and cotton tissues. Plant Sci 180:323–332

    Article  CAS  Google Scholar 

  42. Li FF, Wu SJ, Chen TZ, Zhang J, Wang HH, Guo WZ, Zhang TZ (2009) Agrobacterium-mediated co-transformation of multiple genes in upland cotton. Plant Cell Tissue Organ Cult 97:225–235

    Article  CAS  Google Scholar 

  43. Liu JF, Zhao CY, Ma J, Zhang GY, Li MG, Yan GJ, Wang XF, Ma ZY (2009) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L.) with a fungal phytase gene improves phosphorus acquisition. Euphytica 181:31–40

    Article  CAS  Google Scholar 

  44. Nandeshwar SB, Moghe S, Chakrabarty PK, Deshattiwar MK, Kranthi K, Anandkumar P, Mayee CD, Khadi BM (2009) Agrobacterium-mediated transformation of cry1Ac gene into shoot-tip meristem of diploid cotton Gossypium arboreum cv. RG8 and regeneration of transgenic plants. Plant Mol Biol Rep 27:549–557

    Article  CAS  Google Scholar 

  45. Wu JH, Luo XL, Zhang XR, Shi YJ, Tian YC (2011) Development of insect-resistant transgenic cotton with chimeric TVip3A*accumulating in chloroplasts. Transgenic Res 20:963–973

    Article  PubMed  CAS  Google Scholar 

  46. Wu SJ, Wang HH, Li FF, Chen TZ, Zhang J, Jiang YJ, Ding YZ, Guo WZ, Zhang TZ (2008) Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton via efficient selection and timely subculture of somatic embryos. Plant Mol Biol Rep 26:174–185

    Article  CAS  Google Scholar 

  47. Zhang J, Cai L, Cheng JQ, Mao HZ, Fan XP, Meng ZH, Chan KM, Zhang HJ, Qi JF, Ji LH, Hong Y (2008) Transgene integration and organization in Cotton (Gossypium hirsutum L.) genome. Transgenic Res 17:293–306

    Article  PubMed  CAS  Google Scholar 

  48. Ikram Ul H (2004) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L.) via vacuum infiltration. Plant Mol Biol Rep 22:279–288

    Article  Google Scholar 

  49. Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470

    Article  PubMed  CAS  Google Scholar 

  50. Satyavathi VV, Prasad V, Lakshmi BG, Sita GL (2002) High efficiency transformation protocol for three Indian cotton varieties via Agrobacterium tumefaciens. Plant Sci 162:215–223

    Article  CAS  Google Scholar 

  51. Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8:37–52

    Article  CAS  Google Scholar 

  52. Tohidfar M, Mohammadi M, Ghareyazie B (2005) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tissue Organ Cult 83:83–96

    Article  CAS  Google Scholar 

  53. Yuceer SU, Koc NK (2006) Agrobacterium-mediated transformation and regeneration of cotton plants. Russian J Plant Physiol 53:413–417

    Article  CAS  Google Scholar 

  54. Zhao FY, Li YF, Xu PL (2006) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L. cv. Zhongmian 35) using glyphosate as a selectable marker. Biotechnol Lett 28:1199–1207

    Article  PubMed  CAS  Google Scholar 

  55. Zhu SW, Gao P, Sun JS, Wang HH, Luo XM, Jiao MY, Wang ZY, Xia GX (2006) Genetic transformation of green-colored cotton. Vitro Cell Dev Biol Plant 42:439–444

    Article  CAS  Google Scholar 

  56. Jin SX, Zhang XL, Liang SG, Nie YC, Guo XP, Huang C (2005) Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 81:229–237

    Article  CAS  Google Scholar 

  57. Wu S-J, Wang H-H, Li F-F, Chen T-Z, Zhang J, Jiang Y-J, Ding Y, Guo W-Z, Zhang T-Z (2008) Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton via efficient selection and timely subculture of somatic embryos. Plant Mol Biol Rep 26:174–185

    Article  CAS  Google Scholar 

  58. Joubert P, Beaupere D, Lelievre P, Wadouachi A, Sangwan RS, Sangwan-Norreel BS (2002) Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction – a plausible molecular mechanism of phenol binding protein activation. Plant Sci 162:733–743

    Article  CAS  Google Scholar 

  59. Lai E-M, Shih H-W, Wen S-R, Cheng M-W, Hwang H-H, Chiu S-H (2006) Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 6:4130–4136

    Article  PubMed  CAS  Google Scholar 

  60. Nair GR, Lai X, Wise AA, Rhee BW, Jacobs M, Binns AN (2011) The integrity of the periplasmic domain of the VirA sensor kinase is critical for optimal coordination of the virulence signal response in Agrobacterium tumefaciens. J Bacteriol 193:1436–1448

    Article  PubMed  CAS  Google Scholar 

  61. Stachel SE, Messens E, Vanmontagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  62. Wu J, Zhang X, Nie Y, Luo X (2005) High-efficiency transformation of Gossypium hirsutum embryogenic calli mediated by Agrobacterium tumefaciens and regeneration of insect-resistant plants. Plant Breed 124:142–146

    Article  CAS  Google Scholar 

  63. Zapata C, Park SH, El-Zik KM, Smith RH (1999) Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex. Theor Appl Genet 98:252–256

    Article  Google Scholar 

  64. McCabe DE, Martinell BJ (1993) Transformation of elite cotton cultivars via particle bombardment of meristems. Bio-Technology 11:596–598

    Google Scholar 

  65. Chlan CA, Lin JM, Cary JW, Cleveland TE (1995) A procedure for biolistic transformation and regeneration of transgenic cotton from meristematic tissue. Plant Mol Biol Rep 13:31–37

    Article  Google Scholar 

  66. Liu JF, Wang XF, Li QL, Li X, Zhang GY, Li MG, Ma ZY (2011) Biolistic transformation of cotton (Gossypium hirsutum L.) with the phyA gene from Aspergillus ficuum. Plant Cell Tissue Organ Cult 106:207–214

    Article  CAS  Google Scholar 

  67. Rech EL, Vianna GR, Aragao FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410–418

    Article  PubMed  CAS  Google Scholar 

  68. Banerjee AK, Agrawal DC, Nalawade SM, Krishnamurthy KV (2002) Transient expression of beta-glucuronidase in embryo axes of cotton by Agrobacterium and particle bombardment methods. Biologia Plantarum 45:359–365

    Article  CAS  Google Scholar 

  69. Dangat SS, Rajput SG, Wable KJ, Jaybhaye AA, Patil VU (2007) A biolistic approach for transformation and expression of cry 1Ac gene in shoot tips of cotton (Gossypium hirsutum). Res J Biotechnol 2:43–46

    CAS  Google Scholar 

  70. Rajasekaran K, Hudspeth RL, Cary JW, Anderson DM, Cleveland TE (2000) High-frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Rep 19:539–545

    Article  CAS  Google Scholar 

  71. Finer JJ, McMullen MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8:586–589

    Article  Google Scholar 

  72. Zhou G, Weng J, Zheng Y, Huang J, Qian S, Liu G (1983) Introduction of exogenous DNA into cotton embryos. Methods Enzymol 101:433–481

    Article  PubMed  CAS  Google Scholar 

  73. Huang GC, Dong YM, Sun JS (1999) Introduction of exogenous DNA into cotton via the pollen-tube pathway with GFP as a reporter. Chinese Sci Bull 44:698–701

    Article  CAS  Google Scholar 

  74. Ni WC, Guo SD, Jia SR (2000) Cotton transformation with the pollen tube pathway. Rev China Agricult Sci Technol 2:27–32

    Google Scholar 

  75. Yang A, Su Q, An L, Liu J, Wu W, Qiu Z (2009) Detection of vector- and selectable marker-free transgenic maize with a linear GFP cassette transformation via the pollen-tube pathway. J Biotechnol 139:1–5

    Article  PubMed  CAS  Google Scholar 

  76. Hao J, Niu Y, Yang B, Gao F, Zhang L, Wang J, Hasi A (2011) Transformation of a marker-free and vector-free antisense ACC oxidase gene cassette into melon via the pollen-tube pathway. Biotechnol Lett 33:55–61

    Article  PubMed  CAS  Google Scholar 

  77. Hu CY, Wang LZ (1999) In planta soybean transformation technologies developed in China: procedure, confirmation and field performance. Vitro Cell Dev Biol Plant 35:417–420

    Article  Google Scholar 

  78. Shou HX, Palmer RG, Wang K (2002) Irreproducibility of the soybean pollen-tube pathway transformation procedure. Plant Mol Biol Rep 20:325–334

    Article  CAS  Google Scholar 

  79. Yang S, Li G, Li M, Wang J (2011) Transgenic soybean with low phytate content constructed by Agrobacterium transformation and pollen-tube pathway. Euphytica 177:375–382

    Article  CAS  Google Scholar 

  80. Martin N, Forgeois P, Picard E (1992) Investigations on transforming Triticum aestivum via pollen tube pathway. Agronomie 12:537–544

    Article  Google Scholar 

  81. Qiu Z, Su Q, An L-J (2008) Application of FITC tracing in the optimization of wheat transformation via pollen-tube pathway. Xibei Zhiwu Xuebao 28:611–616

    CAS  Google Scholar 

  82. Yin J, Yu G-R, Ren J-P, Li L, Song L (2004) Transforming anti-TrxS gene into wheat by means of pollen tube pathway and ovary injection. Xibei Zhiwu Xuebao 24:776–780

    CAS  Google Scholar 

  83. Zeng JZ, Wang DJ, Wu YQ, Zhang J, Zhou WJ, Zhu XP, Xu NZ (1994) Transgenic wheat obtained with pollen tube pathway method. Sci China Ser B Chem 37:319–325

    CAS  Google Scholar 

  84. Wei J-Y, Liu D-B, Chen Y-Y, Cai Q-F, Zhou P (2008) Transformation of PRSV-CP dsRNA gene into papaya by pollen-tube pathway technique. Xibei Zhiwu Xuebao 28:2159–2163

    CAS  Google Scholar 

  85. Zhang YS, Yin XY, Yang AF, Li GS, Zhang JR (2005) Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica 144:11–22

    Article  CAS  Google Scholar 

  86. Zhang BH, Pan XP, Wang QL (2005) Development and commercial use of Bt cotton. Physiol Mol Biol Plants 11:51–64

    CAS  Google Scholar 

  87. Zhang BH, Liu F, Yao CB, Wang KB (2000) Recent progress in cotton biotechnology and genetic engineering in China. Curr Sci 79:37–44

    CAS  Google Scholar 

  88. Zhang BH, Feng R (2000) Cotton-resistance to pests and transgenic pest-resistant cotton. China Agricultural Science and Technology, Beijing

    Google Scholar 

  89. Baur ME, Boethel DJ (2003) Effect of Bt-cotton expressing Cry1A(c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biol Contr 26:325–332

    Article  CAS  Google Scholar 

  90. Mellet MA, Schoeman AS, Broodryk SW, Hofs JL (2004) Bollworm (Helicoverpa armigera (Hubner), Lepidoptera: Noctuidae) occurrences in Bt- and non-Bt-cotton fields, Marble Hall, Mpumalanga, South Africa. African Entomol 12:107–115

    Google Scholar 

  91. Li YX, Greenberg SM, Liu TX (2006) Effects of Bt cotton expressing Cry1Ac and Cry2Ab and non-Bt cotton on behavior, survival and development of Trichoplusia ni (Lepidoptera: Noctuidae). Crop Prot 25:940–948

    Article  CAS  Google Scholar 

  92. Carriere Y, Ellers-Kirk C, Biggs RW, Sims MA, Dennehy TJ, Tabashnik BE (2007) Effects of resistance to Bt cotton on diapause in the pink bollworm, Pectinophora gossypiella. J Insect Sci 7:1–12

    Article  PubMed  Google Scholar 

  93. Ramasundaram P, Vennila S, Ingle RK (2007) Bt cotton performance and constraints in central India. Outlook Agricult 36:175–180

    Article  Google Scholar 

  94. Zhao J, Lu M, Fan X, Xie F (1998) Survival and growth of different instar larvae of Helicoverpa armigera (Hubner) on transgenic Bt cotton. Acta Entomol Sin 41:354–358

    Google Scholar 

  95. Adamczyk JJ, Gore J (2003) Varying levels of Cry1Ac in transgenic Bacillus thuringiensis Berliner (Bt) cotton leaf bioassays. J Agricult Urban Entomol 20:49–53

    CAS  Google Scholar 

  96. Parker CD, Mascarenhas VJ, Luttrell RG, Knighten K (2000) Survival rates of tobacco budworm (Lepidoptera: Noctuidae) larvae exposed to transgenic cottons expressing insecticidal protein of Bacillus thuringiensis Berliner. J Entomol Sci 35:105–117

    Google Scholar 

  97. Gore J, Leonard BR, Church GE, Cook DR (2002) Behavior of bollworm (Lepidoptera: Noctuidae) larvae on genetically engineered cotton. J Econ Entomol 95:763–769

    Article  PubMed  CAS  Google Scholar 

  98. Gore J, Leonard BR, Church GE, Russell JS, Hall TS (2000) Cotton boll abscission and yield losses associated with first-instar bollworm (Lepidoptera: Noctuidae) injury to nontransgenic and transgenic Bt cotton. J Econ Entomol 93:690–696

    Article  PubMed  CAS  Google Scholar 

  99. Buchanan GA (1992) Trends in weed control methods. In: Weeds of cotton: characterization and control. Cotton Foundation

    Google Scholar 

  100. Steinrucken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212

    Article  PubMed  CAS  Google Scholar 

  101. Nida DL, Kolacz KH, Buehler RE, Deaton WR, Schuler WR, Armstrong TA, Taylor ML, Ebert CC, Rogan GJ, Padgette SR, Fuchs RL (1996) Glyphosate-tolerant cotton: genetic characterization and protein expression. J Agric Food Chem 44:1960–1966

    Article  CAS  Google Scholar 

  102. Riar DS, Norsworthy JK, Griffith GM (2011) Herbicide programs for enhanced glyphosate-resistant and glufosinate-resistant cotton (Gossypium hirsutum). Weed Technol 25:526–534

    Article  CAS  Google Scholar 

  103. Pasapula V, Shen GX, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen JA, Qiu XY, Zhu LF, Zhang XL, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H(+)-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99

    Article  PubMed  CAS  Google Scholar 

  104. Zhang KW, Guo N, Lian LJ, Wang J, Lv SL, Zhang JR (2011) Improved salt tolerance and seed cotton yield in cotton (Gossypium hirsutum L.) by transformation with betA gene for glycinebetaine synthesis. Euphytica 181:1–16

    Article  CAS  Google Scholar 

  105. Zhu CF, Wang YX, Li YB, Bhatti KH, Tian YC, Wu JH (2011) Overexpression of a cotton cyclophilin gene (GhCyp1) in transgenic tobacco plants confers dual tolerance to salt stress and Pseudomonas syringae pv. tabaci infection. Plant Physiol Biochem 49:1264–1271

    Article  PubMed  CAS  Google Scholar 

  106. Lv S, Zhang KW, Gao Q, Lian LJ, Song YJ, Zhang JR (2008) Overexpression of an H(+)-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164

    Article  PubMed  CAS  Google Scholar 

  107. Light GG, Mahan JR, Roxas VP, Allen RD (2005) Transgenic cotton (Gossypium hirsutum L.) seedlings expressing a tobacco glutathione S-transferase fail to provide improved stress tolerance. Planta 222:346–354

    Article  PubMed  CAS  Google Scholar 

  108. Wang HY, Wang J, Gao P, Jiao GL, Zhao PM, Li Y, Wang GL, Xia GX (2009) Down-regulation of GhADF1 gene expression affects cotton fibre properties. Plant Biotechnol J 7:13–23

    Article  PubMed  CAS  Google Scholar 

  109. FeiFei L, ShenJie W, Fenni L, TianZi C, Ming J, HaiHai W, YanJie J, Jie Z, WangZhen G, TianZhen Z (2009) Modified fiber qualities of the transgenic cotton expressing a silkworm fibroin gene. Chinese Sci Bull 54:1210–1216

    Article  CAS  Google Scholar 

  110. Zhang M, Zheng XL, Song SQ, Zeng QW, Hou L, Li DM, Zhao J, Wei Y, Li XB, Luo M, Xiao YH, Luo XY, Zhang JF, Xiang CB, Pei Y (2011) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29:453–458

    Article  PubMed  CAS  Google Scholar 

  111. Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen RD (2010) Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta 232:1191–1205

    Article  PubMed  CAS  Google Scholar 

  112. McClintock JT, Schaffer CR, Sjoblad RD (1995) A comparative review of the mammalian toxicity of bacillus thuringiensis-based pesticides. Pest Sci 45:95–105

    Article  CAS  Google Scholar 

  113. Gao YL, Wu KM, Gould F (2009) Frequency of Bt resistance alleles in H-armigera during 2006-2008 in Northern China. Environ Entomol 38:1336–1342

    Article  PubMed  Google Scholar 

  114. Tabashnik BE, Van Rensburg JBJ, Carriere Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2025

    Article  PubMed  CAS  Google Scholar 

  115. Tabashnik BE, Carriere Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT, Shelton AM, Zhao JZ (2003) Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Econ Entomol 96:1031–1038

    Article  PubMed  CAS  Google Scholar 

  116. Carriere Y, Ellers-Kirk C, Hartfield K, Larocque G, Degain B, Dutilleul P, Dennehy TJ, Marsh SE, Crowder DW, Li XC, Ellsworth PC, Naranjo SE, Palumbo JC, Fournier A, Antilla L, Tabashnik BE (2012) Large-scale, spatially-explicit test of the refuge strategy for delaying insecticide resistance. Proc Natl Acad Sci USA 109:775–780

    Article  PubMed  CAS  Google Scholar 

  117. Frisvold GB, Reeves JM (2008) The costs and benefits of refuge requirements: the case of Bt cotton. Ecol Econ 65:87–97

    Article  Google Scholar 

  118. Huang FN, Andow DA, Buschman LL (2011) Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol Exp Appl 140:1–16

    Article  Google Scholar 

  119. Zhao JZ, Cao J, Li YX, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497

    Article  PubMed  CAS  Google Scholar 

  120. Chevre AM, Eber F, Baranger A, Renard M (1997) Gene flow from transgenic crops. Nature 389:924

    Article  CAS  Google Scholar 

  121. Snow AA (2002) Transgenic crops – why gene flow matters. Nat Biotechnol 20:542–542

    Article  PubMed  CAS  Google Scholar 

  122. Heuberger S, Ellers-Kirk C, Tabashnik BE, Carriere Y (2011) Pollen- and seed-mediated transgene flow in commercial cotton seed production fields. PLoS One 5

    Google Scholar 

  123. Zhang BH, Pan XP, Guo TL, Wang QL, Anderson TA (2005) Measuring gene flow in the cultivation of transgenic cotton (Gossypium hirsutum L.). Mol Biotechnol 31:11–20

    Article  PubMed  CAS  Google Scholar 

  124. Llewellyn D, Fitt G (1996) Pollen dispersal from two field trials of transgenic cotton in the Namoi Valley, Australia. Mol Breed 2:157–166

    Article  Google Scholar 

  125. Umbeck PF, Barton KA, Nordheim EV, McCarty JC, Parrott WL, Jenkins JN (1991) Degree of pollen dispersal by insect from a field test of genetically engineered cotton. J Econ Entomol 84:1943–1950

    Google Scholar 

  126. Wegier A, Pineyro-Nelson A, Alarcon J, Galvez-Mariscal A, Alvarez-Buylla ER, Pinero D (2011) Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin. Mol Ecol 20:4182–4194

    Article  PubMed  CAS  Google Scholar 

  127. Free JB (1970) Insect pollination of crops. In: Insect pollination of crops. p 544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, B. (2013). Transgenic Cotton: From Biotransformation Methods to Agricultural Application. In: Zhang, B. (eds) Transgenic Cotton. Methods in Molecular Biology, vol 958. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-212-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-212-4_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-211-7

  • Online ISBN: 978-1-62703-212-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics