Skip to main content

No-Laminectomy Spinal Cord-Transected Murine Model

  • Protocol
  • First Online:
  • 892 Accesses

Part of the book series: Neuromethods ((NM,volume 76))

Abstract

Most animals of contused, compressed, or transected spinal cord injury require that a laminectomy is performed. However, increasing evidence suggests that laminectomies may induce undesirable effects including neuropathic pain, spinal instabilities, longer anesthetic and related consequences, as well as lordosis and other biomechanical and behavioral problems. Here, we present a method for spinal cord transection in adult mice in which laminectomies do not need to be performed. Under isoflurane anesthesia, a partial section of the interspinous ligaments dorsally between the ninth and tenth thoracic vertebrae was performed in order to allow extra fine scissors to be inserted between the corresponding vertebrae and a complete transection to be properly achieved. Once the transection completed (overall procedures take approximately 10–15 min), the surgical area was closed with sutures clips and animals were allowed to recover on heating pads. Histological data from early and late chronic spinal cord-transected mice showed that complete paraplegia with this approach resulted of a 0.25–1 mm scar occurring at the lesion site. Several studies conducted in our laboratory provided evidence that it is a simple, rapid, reliable and reproducible model that may be particularly useful for studies on behaviors, motor and locomotor movements requiring large cohorts of completely paraplegic mice—e.g., for drug screening in vivo and studies aimed at characterizing neuronal and non-neuronal adaptive changes following rehabilitation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Apstein MD, George BC (1998) Serum lipids during the first year following acute spinal cord injury. Metabolism 47:367–370

    Article  PubMed  CAS  Google Scholar 

  2. Burnham R, Martin T, Stein R, Bell G, MacLean I, Steadward R (1997) Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord 35:86–91

    Article  PubMed  CAS  Google Scholar 

  3. Gerrits HL, De Haan A, Hopman MT, van Der Woude LH, Jones DA, Sargeant AJ (1999) Contractile properties of the quadriceps muscle in individuals with spinal cord injury. Muscle Nerve 22:1249–1256

    Article  PubMed  CAS  Google Scholar 

  4. Grimby G, Broberg C, Krotkiewska I, Krotkiewski M (1976) Muscle fiber composition in patients with traumatic cord lesion. Scand J Rehabil Med 8:37–42

    PubMed  CAS  Google Scholar 

  5. Mechanick JI, Pomerantz F, Flanagan S, Stein A, Gordon WA, Ragnarsson KT (1997) Parathyroid hormone suppression in spinal cord injury patients is associated with the degree of neurologic impairment and not the level of injury. Arch Phys Med Rehabil 78:692–696

    Article  PubMed  CAS  Google Scholar 

  6. Naftchi NE, Viau AT, Sell GH, Lowman EW (1980) Pituitary-testicular axis dysfunction in spinal cord injury. Arch Phys Med Rehabil 61:402–405

    PubMed  CAS  Google Scholar 

  7. Ragnarsson KT, Sell GH (1981) Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil 62:418–423

    PubMed  CAS  Google Scholar 

  8. Scott WB, Lee SC, Johnston TE, Binkley J, Binder-Macleod SA (2006) Contractile properties and the force-frequency relationship of the paralyzed human quadriceps femoris muscle. Phys Ther 86:788–799

    PubMed  Google Scholar 

  9. Bauman WA, Spungen AM, Adkins RH, Kemp BJ (1999) Metabolic and endocrine changes in persons aging with spinal cord injury. Assist Technol 11(2):88–96

    Article  PubMed  CAS  Google Scholar 

  10. Zehnder Y, Lüthi M, Michel D, Knecht H, Perrelet R, Neto I et al (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15:180–189

    Article  PubMed  Google Scholar 

  11. Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244–256

    Article  PubMed  CAS  Google Scholar 

  12. Farooque M (2000) Spinal cord compression injury in the mouse: presentation of a model including assessment of motor dysfunction. Acta Neuropathol (Berl) 100:13–22

    Article  CAS  Google Scholar 

  13. Kwon BK, Oxland TR, Tetzlaff W (2002) Animal models used in spinal cord regeneration research. Spine 27:1504–1510

    Article  PubMed  Google Scholar 

  14. Sheng H, Wang H, Homi HM, Spasojevic I, Batinic-Haberle I, Pearlstein RD et al (2004) A no-laminectomy spinal cord compression injury model in mice. J Neurotrauma 21(5):595–603

    Article  PubMed  Google Scholar 

  15. Steward O, Schauwecker PE, Guth L, Zhang Z, Fujiki M, Inman D et al (1999) Genetic approaches to neurotrauma research: opportunities and potential pitfalls of murine models. Exp Neurol 157:19–42

    Article  PubMed  CAS  Google Scholar 

  16. McKerracher L, David S (2004) Easing the brakes on spinal cord repair. Nat Med 10:1052–1053

    Article  PubMed  CAS  Google Scholar 

  17. Plunet W, Kwon BK, Tetzlaff W (2002) Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy. J Neurosci Res 68(1):1–6

    Article  PubMed  CAS  Google Scholar 

  18. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156

    Article  PubMed  CAS  Google Scholar 

  19. Guertin PA (2004) Role of NMDA receptor activation in serotonin agonist-induced air-stepping in paraplegic mice. Spinal Cord 42(3):185–190

    Article  PubMed  CAS  Google Scholar 

  20. Guertin PA (2008) A technological platform to optimize combinatorial treatment design and discovery for chronic spinal cord injury. J Neurosci Res 86(14):3039–3051

    Article  PubMed  CAS  Google Scholar 

  21. Landry E, Frenette J, Guertin PA (2004) Body weight, limb size, and muscular properties of early paraplegic mice. J Neurotrauma 21(8):1008–1016

    Article  PubMed  Google Scholar 

  22. Lapointe NP, Ung RV, Guertin PA (2007) Plasticity in sublesionally located neurons following spinal cord injury. J Neurophysiol 98(5):2497–2500

    Article  PubMed  CAS  Google Scholar 

  23. Ung RV, Lapointe NP, Guertin PA (2008) Early adaptive changes in chronic paraplegic mice: a model to study rapid health degradation after spinal cord injury. Spinal Cord 46(3):176–180

    Article  PubMed  Google Scholar 

  24. Ung RV, Rouleau P, Guertin PA (2011) Functional and physiological effects of treadmill training induced by buspirone, carbidopa, and L-DOPA in clenbuterol-treated paraplegic mice. Neurorehabil Neural Repair 26(4):385–94

    PubMed  Google Scholar 

  25. Byrnes KR, Garay J, Di Giovanni S, De Biase A, Knoblach SM, Hoffman EP et al (2006) Expression of two temporally distinct microglia-related gene clusters after spinal cord injury. Glia 53:420–433

    Article  PubMed  Google Scholar 

  26. Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI (2003) Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53(4):454–468

    Article  PubMed  Google Scholar 

  27. Lukacova N, Kolesarova M, Kucharova K, Pavel J, Kolesar D, Radonak J et al (2006) The effect of a spinal cord hemisection on changes in nitric oxide synthase pools in the site of injury and in regions located far away from the injured site. Cell Mol Neurobiol 26:1365–1383

    Article  Google Scholar 

  28. Ruggiero DA, Anwar M, Kim J, Sica AL, Gootman N, Gootman PA (1997) Induction of c-fos gene expression by spinal cord transection in the rat. Brain Res 763:21–29

    Article  PubMed  CAS  Google Scholar 

  29. Song G, Cechvala C, Resnick DK, Dempsey RJ, Rao VL (2001) GeneChip analysis after acute spinal cord injury in rat. J Neurochem 79:804–815

    Article  PubMed  CAS  Google Scholar 

  30. Yakovlev AG, Faden AI (1994) Sequential expression of c-fos protooncogene, TNF-alpha, and dynorphin genes in spinal cord following experimental traumatic injury. Mol Chem Neuropathol 23:179–190

    Article  PubMed  CAS  Google Scholar 

  31. Antri M, Orsal D, Barthe JY (2002) Locomotor recovery in the chronic spinal rat: effects of long-term treatment with a 5-HT2 agonist. Eur J Neurosci 16:467–476

    Article  PubMed  CAS  Google Scholar 

  32. Gomez-Pinilla F, Ying Z, Roy RR, Hodgson J, Edgerton VR (2004) Afferent input modulates neurotrophins and synaptic plasticity in the spinal cord. J Neurophysiol 92:3423–3432

    Article  PubMed  CAS  Google Scholar 

  33. Guertin PA (2009) Recovery of locomotor function with combinatory drug treatments designed to synergistically activate specific neuronal networks. Curr Med Chem 16(11):1366–1371

    Article  PubMed  CAS  Google Scholar 

  34. Ung RV, Lapointe NP, Tremblay C, Larouche A, Guertin PA (2007) Spontaneous recovery of hindlimb movement in completely spinal cord transected mice: a comparison of assessment methods and conditions. Spinal Cord 45(5):367–379

    PubMed  CAS  Google Scholar 

  35. Li XL, Zhang W, Zhou X, Wang XY, Zhang HT, Qin DX et al (2007) Temporal changes in the expression of some neurotrophins in spinal cord transected adult rats. Neuropeptides 41:135–143

    Article  PubMed  CAS  Google Scholar 

  36. Bai ZT, Liu T, Pang XY, Chai ZF, Ji YH (2007) Suppression by intrathecal BmK IT2 on rat spontaneous pain behaviors and spinal c-Fos expression induced by formalin. Brain Res Bull 73:248–253

    Article  PubMed  CAS  Google Scholar 

  37. Cruz CD, Ferreira D, McMahon SB, Cruz F (2007) The activation of the ERK pathway contributes to the spinal c-fos expression observed after noxious bladder stimulation. Somatosens Mot Res 24:15–20

    Article  PubMed  Google Scholar 

  38. Kim Y, Hong S, Noh MR, Kim SY, Huh PW, Park SH et al (2006) Induction of neuron-derived orphan receptor-1 in the dentate gyrus of the hippocampal formation following transient global ischemia in the rat. Mol Cells 22:8–12

    PubMed  CAS  Google Scholar 

  39. Landry ES, Rouillard C, Levesque D, Guertin PA (2006) Profile of immediate early gene expression in the lumbar spinal cord of low-thoracic paraplegic mice. Behav Neurosci 120(6):1384–1388

    Article  PubMed  CAS  Google Scholar 

  40. Nishimaru H, Kudo N (2000) Formation of the central pattern generator for locomotion in the rat and mouse. Brain Res Bull 53:661–669

    Article  PubMed  CAS  Google Scholar 

  41. Talmadge RJ, Roy RR, Edgerton VR (1996) Alterations in the glycinergic neurotransmitter system are associated with stepping behavior in neonatal spinal cord transected rats. Society for Neuroscience Abstracts 22:1397.

    Google Scholar 

  42. Giroux N, Rossignol S, Reader TA (1999) Autoradiographic study of alpha1- and alpha2-noradrenergic and serotonin1A receptors in the spinal cord of normal and chronically transected cats. J Comp Neurol 406(3):402–414

    Article  PubMed  CAS  Google Scholar 

  43. Landry ES, Lapointe NP, Rouillard C, Levesque D, Hedlund PB, Guertin PA (2006) Contribution of spinal 5-HT1A and 5-HT7 receptors to locomotor-like movement induced by 8-OH-DPAT in spinal cord-transected mice. Eur J Neurosci 24(2):535–546

    Article  PubMed  Google Scholar 

  44. Picard S, Lapointe NP, Brown JP, Guertin PA (2008) Histomorphometric and densitometric changes in the femora of spinal cord transected mice. Anat Rec (Hoboken) 291(3):303–307

    Article  Google Scholar 

  45. Rantakokko J, Uusitalo H, Jamsa T, Tuukkanen J, Aro HT, Vuorio E (1999) Expression profiles of mrnas for osteoblast and osteoclast proteins as indicators of bone loss in mouse immobilization osteopenia model. J Bone Miner Res 14:1934–1942

    Article  PubMed  CAS  Google Scholar 

  46. Rouleau P, Guertin PA (2007) Early changes in deep vein diameter and biochemical markers associated with thrombi formation after spinal cord injury in mice. J Neurotrauma 24(8):1406–1414

    Article  PubMed  Google Scholar 

  47. Rouleau P, Ung RV, Lapointe NP, Guertin PA (2007) Hormonal and immunological changes in mice after spinal cord injury. J Neurotrauma 24(2):367–378

    Article  PubMed  Google Scholar 

  48. Guertin PA, Steuer I (2009) Key central pattern generators of the spinal cord. J Neurosci Res 87(11):2399–2405, Review

    Article  PubMed  CAS  Google Scholar 

  49. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  PubMed  CAS  Google Scholar 

  50. Ma M, Basso DM, Walters P, Stokes BT, Jakeman LB (2001) Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse. Exp Neurol 169:239–254

    Article  PubMed  CAS  Google Scholar 

  51. Guertin PA (2005) Semiquantitative assessment of hindlimb movement recovery without intervention in adult paraplegic mice. Spinal Cord 43:162–166

    Article  PubMed  CAS  Google Scholar 

  52. Lapointe NP, Ung RV, Bergeron M, Cote M, Guertin PA (2006) Strain-dependent recovery of spontaneous hindlimb movement in spinal cord transected mice (CD1, C57BL/6, BALB/c). Behav Neurosci 120(4):826–834

    Article  PubMed  Google Scholar 

  53. Cabukoglu C, Güven O, Yildirim Y, Kara H, Ramadan SS (2004) Effect of sagittal plane deformity of the lumbar spine on epidural fibrosis formation after laminectomy: an experimental study in the rat. Spine (Phila Pa 1976) 29(20):2242–7

    Article  Google Scholar 

  54. Kosta V, Kojundzić SL, Sapunar LC, Sapunar D (2009) The extent of laminectomy affects pain-related behavior in a rat model of neuropathic pain. Eur J Pain 13(3):243–248

    Article  PubMed  Google Scholar 

  55. Rossignol S, Giroux N, Chau C, Marcoux J, Brustein E, Reader TA (2001) Pharmacological aids to locomotor training after spinal injury in the cat. J Physiol 533(Pt 1):65–74

    Article  PubMed  CAS  Google Scholar 

  56. Rémy-Néris O, Denys P, Daniel O, Barbeau H, Bussel B (2003) Effect of intrathecal clonidine on group I and group II oligosynaptic excitation in paraplegics. Exp Brain Res 148(4):509–514

    PubMed  Google Scholar 

  57. Lapointe NP, Guertin PA (2008) Synergistic effects of D1/5 and 5-HT1A/7 receptor agonists on locomotor movement induction in complete spinal cord-transected mice. J Neurophysiol 100(1):160–168

    Article  PubMed  CAS  Google Scholar 

  58. Lapointe NP, Rouleau P, Ung RV, Guertin PA (2009) Specific role of dopamine D1 receptors in spinal network activation and rhythmic movement induction in vertebrates. J Physiol 587(7):1499–1511

    Article  PubMed  CAS  Google Scholar 

  59. Ung RV, Landry ES, Rouleau P, Lapointe NP, Rouillard C, Guertin PA (2008) Role of spinal 5-HT2 receptor subtypes in quipazine-induced hindlimb movements after a low-thoracic spinal cord transection. Eur J Neurosci 28(11):2231–2242

    Article  PubMed  Google Scholar 

  60. Guertin PA, Ung RV, Rouleau P (2010) Oral administration of a tri-therapy for central pattern generator activation in paraplegic mice: proof-of-concept of efficacy. Biotechnol J 5(4):421–426

    Article  PubMed  CAS  Google Scholar 

  61. Guertin PA, Ung RV, Rouleau P, Steuer I (2011) Effects on locomotion, muscle, bone and blood induced by a combination therapy eliciting weight-bearing stepping in non-assisted spinal cord-transected mice. Neurorehab Neural Repair 25(3):234–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre A. Guertin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Guertin, P.A. (2013). No-Laminectomy Spinal Cord-Transected Murine Model. In: Aldskogius, H. (eds) Animal Models of Spinal Cord Repair. Neuromethods, vol 76. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-197-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-197-4_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-196-7

  • Online ISBN: 978-1-62703-197-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics