Skip to main content

Combination of In Vivo Microdialysis with Selective Electrochemical Detection for Online Continuous Monitoring of Brain Chemistry

  • Protocol
  • First Online:
Microdialysis Techniques in Neuroscience

Part of the book series: Neuromethods ((NM,volume 75))

  • 875 Accesses

Abstract

This chapter summarizes the recent development of combination of in vivo microdialysis with selective detection, especially electrochemical detection, to form novel online analytical methods for continuously monitoring brain chemistry, without the need for sample collection, pretreatment, or separation. While efficient combination of in vivo microdialysis sampling directly with selective electrochemical detection is envisaged to provide less technically demanding in vivo and online analytical methods for near-real-time monitoring physiologically important neurochemicals in the living animals, which is particularly useful for understanding the molecular basis of brain functions, the complexity in the components of the cerebral systems and the inherent features of the as-developed integrated online analytical systems (i.e., without sampling collection, pretreatment, or separation) virtually puts the selective electrochemical detection into a great challenge with respect to the selectivity, sensitivity, stability, and reproducibility. This chapter focuses on the following three aspects: (1) brief introduction of in vivo and online analytical methods developed by directly combining in vivo microdialysis sampling with selective electrochemical detection; (2) recent developments along with this line both in the method establishment and in their applications in understanding brain chemistry through interfacing electroanalytical chemistry with physiology and pathology; and (3) summary and future developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venton BJ, Wightman RM (2003) Psychoanalytical electrochemistry: dopamine and behavior. Anal Chem 75:414A–421A

    Article  CAS  Google Scholar 

  2. Stuart JN, Hummon AB, Sweedler JV (2004) The chemistry of thought: neurotransmitters in the brain. Anal Chem 76:121A–128A

    Article  PubMed  Google Scholar 

  3. Dale N, Hatz S, Tian F, Llaudet E (2005) Listening to the brain: microelectrode biosensors for neurochemicals. Trends Biotechnol 23:420–428

    Article  PubMed  CAS  Google Scholar 

  4. Marco G, Devauchelle B, Berquin P (2009) Brain functional modeling, what do we measure with fMRI data? Neurosci Res 64:12–19

    Article  PubMed  Google Scholar 

  5. Miller G (2009) On the origin of the nervous system. Science 325:24–26

    Article  PubMed  CAS  Google Scholar 

  6. Coutinho V, Knöpfel T (2002) Metabotropic glutamate receptors: electrical and chemical signaling properties. Neuroscientist 8:551–561

    Article  PubMed  CAS  Google Scholar 

  7. Zhu C, Wu LQ, Wang X, Lee JH, English DS, Ghodssi R, Raghavan SR, Payne GF (2007) Reversible vesicle restraint in response to spatiotemporally controlled electrical signals: a bridge between electrical and chemical signaling modes. Langmuir 23:286–291

    Article  PubMed  CAS  Google Scholar 

  8. Verkhratsky A (2009) Astrocytes in (patho)physiology of the nervous system. In: Haydon PG, Parpura V (eds) Neurotransmitter receptors in astrocytes. Springer, New York

    Google Scholar 

  9. Stefan H, Hummel C, Scheler G, Genow A, Druschky K, Tilz C, Kaltenhäuser M, Hopfengärtner R, Buchfelder M, Romstöck J (2003) Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain 126:2396–2405

    Article  PubMed  CAS  Google Scholar 

  10. Gross BA, Hanna DM (2010) Artificial neural networks capable of learning spatiotemporal chemical diffusion in the cortical brain. Pattern Recogn 43:3910–3921

    Article  Google Scholar 

  11. Wilson JRF, Green A (2009) Acute traumatic brain injury: a review of recent advances in imaging and management. Eur J Trauma Emerg Surg 35:176–185

    Article  Google Scholar 

  12. Kemp GJ (2000) Non-invasive methods for studying brain energy metabolism: what they show and what it means. Dev Neurosci 22:418–428

    Article  PubMed  CAS  Google Scholar 

  13. Garris PA (2010) Advancing neurochemical monitoring. Nat Methods 7:106–108

    Article  PubMed  CAS  Google Scholar 

  14. Ostrovskii AMA (2010) Current trends in modern brain science. Her Russ Acad Sci 80:187–198

    Article  Google Scholar 

  15. Georganopoulou DG, Carley R, Jones DA, Boutelle MG (2000) Development and comparison of biosensors for in-vivo applications. Faraday Discuss 116:291–303

    Article  PubMed  CAS  Google Scholar 

  16. Troyer KP, Heien ML, Venton BJ, Wightman RM (2002) Neurochemistry and electroanalytical probes. Curr Opin Chem Biol 6:696–703

    Article  PubMed  CAS  Google Scholar 

  17. Khan AS, Michael AC (2003) Invasive consequences of using micro-electrodes and microdialysis probes in the brain. Trends Anal Chem 22:503–508

    Article  CAS  Google Scholar 

  18. Zhang MN, Mao LQ (2005) Enzyme-based amperometric biosensors for continuous and on-line monitoring of cerebral extracellular microdialysate. Front Biosci 10:345–352

    Article  PubMed  CAS  Google Scholar 

  19. Watson CJ, Venton BJ, Kennedy RT (2006) In vivo measurements of neurotransmitters by microdialysis sampling. Anal Chem 78:1391–1399

    Article  PubMed  Google Scholar 

  20. Adams RN (1976) Probing brain chemistry with electroanalytical technique. Anal Chem 48:1128A–1137A

    Article  Google Scholar 

  21. Wang J (1999) Electroanalysis and biosensors. Anal Chem 71:328R–332R

    Article  PubMed  CAS  Google Scholar 

  22. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20:2388–2403

    Article  PubMed  CAS  Google Scholar 

  23. Huffman ML, Venton BJ (2009) Carbon-fiber microelectrodes for in vivo applications. Analyst 13:18–24

    Article  CAS  Google Scholar 

  24. Crespi F (2010) Wireless in vivo voltammetric measurements of neurotransmitters in freely behaving rats. Biosens Bioelectron 25:2425–2430

    Article  PubMed  CAS  Google Scholar 

  25. Tse RS, Wong SC, Yuen CP (1980) Determination of deuterium/hydrogen ratios in natural waters by fourier transform nuclear magnetic resonance spectrometry. Anal Chem 52:2445–2448

    Article  CAS  Google Scholar 

  26. Feng JX, Brazell M, Renner K, Kasser R, Adams RN (1987) Electrochemical pretreatment of carbon fibers for in vivo electrochemistry: effects on sensitivity and response time. Anal Chem 59:1863–1867

    Article  PubMed  CAS  Google Scholar 

  27. Zhang XJ, Zhang WM, Zhou XY, Ogorevc B (1996) Fabrication, characterization, and potential application of carbon fiber cone nanometer-size electrodes. Anal Chem 68:3338–3343

    Article  PubMed  CAS  Google Scholar 

  28. Adams RN (1976) Probing brain chemistry with electroanalytical techniques. Anal Chem 48:1126A–1138A

    Article  PubMed  CAS  Google Scholar 

  29. Stamford JA, Kruk ZL, Millar J (1984) Regional differences in extracellular ascorbic acid levels in the rat brain determined by high speed cyclic voltammetry. Brain Res 299:289–295

    Article  PubMed  CAS  Google Scholar 

  30. Phillips PEM, Stuber GD, Heien MLAV, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618

    Article  PubMed  CAS  Google Scholar 

  31. Zhang MN, Liu K, Xiang L, Lin YQ, Su L, Mao LQ (2007) Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain. Anal Chem 79:6559–6565

    Article  PubMed  CAS  Google Scholar 

  32. Parry TJ, Carter TL, McElligott JG (1990) Physical and chemical considerations in the in vitro calibration of microdialysis probes for biogenic amine neurotransmitters and metabolites. J Neurosci Methods 32:175–183

    Article  PubMed  CAS  Google Scholar 

  33. Tisdall MM, Smith M (2006) Cerebral microdialysis: research technique or clinical tool. Br J Anaesth 97:18–25

    Article  PubMed  CAS  Google Scholar 

  34. Ungerstedt U, Pycock C (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 30:44–55

    PubMed  CAS  Google Scholar 

  35. Bourne JA (2003) Intracerebral microdialysis: 30 years as a tool for the neuroscientist. Clin Exp pharmacol Physiol 30:16–24

    Article  PubMed  CAS  Google Scholar 

  36. Guihen E, O’Connor WT (2010) Capillary and microchip electrophoresis in microdialysis: recent applications. Electrophoresis 31:55–64

    Article  PubMed  CAS  Google Scholar 

  37. Boret H, Fesselet J, Meaudre E, Gaillard PE, Cantais E (2006) Cerebral microdialysis and PtiO2 for neuro-monitoring before decompressive craniectomy. Acta Anaesthesiol Scand 50:252–254

    Article  PubMed  CAS  Google Scholar 

  38. Peña A, Liu P, Derendorf H (2000) Microdialysis in peripheral tissues. Adv Drug Deliv Rev 45:189–216

    Article  PubMed  Google Scholar 

  39. Davani S, Chocron S, Muret P, Mersin N, Etievent JP, Kantelip JP (2003) Myocardial microdialysis. Importance and potential in cardiovascular research. Pathol Biol 51:39–43

    Article  PubMed  CAS  Google Scholar 

  40. Goodman JC, Robertson CS (2009) Microdialysis: is it ready for prime time? Curr Opin Crit Care 15:110–117

    Article  PubMed  Google Scholar 

  41. Obrenovitch TP, Zilkha E (2001) Microdialysis coupled to online enzymatic assays. Methods 23:63–71

    Article  PubMed  CAS  Google Scholar 

  42. Korf J, Huininka KD, Posthuma-Trumpie GA (2010) Ultraslow microdialysis and microfiltration for in-line, on-line and off-line monitoring. Trends Biotechnol 28:150–158

    Article  PubMed  CAS  Google Scholar 

  43. Hutchinson PJ, O’Connell MT, Nortje J, Smith P, Al-Rawi PG, Gupta AK, Menon DK, Pickard JD (2005) Cerebral microdialysis methodology-evaluation of 20 kDa and 100 kDa catheters. Physiol Meas 26:423–428

    Article  PubMed  CAS  Google Scholar 

  44. Alavijeh MS, Palmer AM (2010) Measurement of the pharmacokinetics and pharmacodynamics of neuroactive compounds. Neurobiol Dis 37:38–47

    Article  PubMed  CAS  Google Scholar 

  45. Li YJ, Peris J, Zhong L, Derendorf H (2006) Microdialysis as a tool in local pharmacodynamics. AAPS J 8:E222–E235

    PubMed  CAS  Google Scholar 

  46. Kehr J (1998) Determination of glutamate and aspartate in microdialysis samples by reversed-phase column liquid chromatography with fluorescence and electrochemical detection. J Chromatogr B 708:27–38

    Article  CAS  Google Scholar 

  47. Li N, Guo JZ, Liu B, Yu YQ, Cui H, Mao LQ, Lin YQ (2009) Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence. Anal Chim Acta 645:48–55

    Article  PubMed  CAS  Google Scholar 

  48. Davies MI, Lunte CE (1997) Microdialysis sampling coupled on-line to microseparation techniques. Chem Soc Rev 26:215–222

    Article  CAS  Google Scholar 

  49. Nandi P, Lunte SM (2009) Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal Chim Acta 651:1–14

    Article  PubMed  CAS  Google Scholar 

  50. Lada MW, Kennedy RT (1996) Quantitative in vivo monitoring of primary amines in rat caudate nucleus using microdialysis coupled by a flow-gated interface to capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 68:2790–2797

    Article  PubMed  CAS  Google Scholar 

  51. Lada MW, Vickroy TW, Kennedy RT (1997) High temporal resolution monitoring of glutamate and aspartate in vivo using microdialysis on-line with capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 69:4560–4565

    Article  PubMed  CAS  Google Scholar 

  52. Cellar NA, Burns ST, Meiners JC, Chen H, Kennedy RT (2005) Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids. Anal Chem 77:7067–7073

    Article  PubMed  CAS  Google Scholar 

  53. Sandlin ZD, Shou MS, Shackman JG, Kennedy RT (2005) Microfluidic electrophoresis chip coupled to microdialysis for in vivo monitoring of amino acid neurotransmitters. Anal Chem 77:7702–7708

    Article  PubMed  CAS  Google Scholar 

  54. Shou MS, Ferrario CR, Schultz KN, Robinson TE, Kennedy RT (2006) Monitoring dopamine in vivo by microdialysis sampling and on-line CE-laser-induced fluorescence. Anal Chem 78:6717–6725

    Article  PubMed  CAS  Google Scholar 

  55. Cellar NA, Kennedy RT (2006) A capillary–PDMS hybrid chip for separations-based sensing of neurotransmitters in vivo. Lab Chip 6:1205–1212

    Article  PubMed  CAS  Google Scholar 

  56. Wang M, Roman GT, Schultz K, Jennings C, Kennedy RT (2008) Improved temporal resolution for in vivo microdialysis by using segmented flow. Anal Chem 80:5607–5615

    Article  PubMed  CAS  Google Scholar 

  57. Ferrario CR, Shou M, Samaha AN, Watson CJ, Kennedy RT, Robinson TE (2008) The rate of intravenous cocaine administration alters c-fos mRNA expression and the temporal dynamics of dopamine, but not glutamate, overflow in the striatum. Brain Res 1209:151–156

    Article  PubMed  CAS  Google Scholar 

  58. Wang M, Roman GT, Perry ML, Kennedy RT (2009) Microfluidic chip for high efficiency electrophoretic analysis of segmented flow from a microdialysis probe and in vivo chemical monitoring. Anal Chem 81:9072–9078

    Article  PubMed  CAS  Google Scholar 

  59. Thompson JE, Vickroy TW, Kennedy RT (1999) Rapid determination of aspartate enantiomers in tissue samples by microdialysis coupled on-line with capillary electrophoresis. Anal Chem 71:2379–2384

    Article  PubMed  CAS  Google Scholar 

  60. Hogan BL, Lunte SM, Stobaugh JF, Lunte CE (1994) On-line coupling of in vivo microdialysis sampling with capillary electrophoresis. Anal Chem 66:596–602

    Article  PubMed  CAS  Google Scholar 

  61. Zhou SY, Zuo H, Stobaugh JF, Lunte CE, Lunte SM (1995) Continuous in vivo monitoring of amino acid neurotransmitters by microdialysis sampling with on-line derivatization and capillary electrophoresis separation. Anal Chem 67:594–599

    Article  PubMed  CAS  Google Scholar 

  62. Zhou JX, Heckert DM, Zuo H, Lunte CE, Lunte SM (1999) On-line coupling of in vivo microdialysis with capillary electrophoresis/electrochemistry. Anal Chim Acta 379:307–317

    Article  CAS  Google Scholar 

  63. O’Brien KB, Esguerra M, Miller RF, Bowser MT (2004) Monitoring neurotransmitter release from isolated retinas using online microdialysis-capillary electrophoresis. Anal Chem 76:5069–5074

    Article  PubMed  CAS  Google Scholar 

  64. José RJ, María DLC (2006) Coupling microdialysis to capillary electrophoresis. Trends Anal Chem 25:563–571

    Article  CAS  Google Scholar 

  65. Klinker CC, Bowse MT (2007) 4-Fluoro-7-nitro-2,1,3-benzoxadiazole as a fluorogenic labeling reagent for the in vivo analysis of amino acid neurotransmitters using online microdialysis-capillary electrophoresis. Anal Chem 79:8747–8754

    Article  PubMed  CAS  Google Scholar 

  66. Li Z, Zharikova A, Bastian J, Esperon L, Hebert N, Mathes C, Rowland NE, Peris J (2008) High temporal resolution of amino acid levels in rat nucleus accumbens during operant ethanol self-administration: involvement of elevated glycine in anticipation. J Neurochem 106:170–181

    Article  PubMed  CAS  Google Scholar 

  67. Lin YQ, Liu K, Yu P, Xiang L, Li XC, Mao LQ (2007) A facile electrochemical method for simultaneous and on-line measurements of glucose and lactate in brain microdialysate with prussian blue as the electrocatalyst for reduction of hydrogen peroxide. Anal Chem 79:9577–9583

    Article  PubMed  CAS  Google Scholar 

  68. Lin YQ, Zhu NN, Yu P, Su L, Mao LQ (2009) Physiologically relevant online electrochemical method for continuous and simultaneous monitoring of striatum glucose and lactate following global cerebral ischemia/reperfusion. Anal Chem 81:2067–2074

    Article  PubMed  CAS  Google Scholar 

  69. Kennedy RT, Watson CJ, Haskins WE, Powell DH, Strecker RE (2002) In vivo neurochemical monitoring by microdialysis and capillary separations. Curr Opin Chem Biol 6:659–665

    Article  PubMed  CAS  Google Scholar 

  70. Parrot S, Sauvinet V, Riban V, Depaulis A, Renaud B, Denoroy L (2004) High temporal resolution for in vivo monitoring of neurotransmitters in awake epileptic rats using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection. J Neurosci Methods 140:29–38

    Article  PubMed  CAS  Google Scholar 

  71. Devall AJ, Blake R, Langman N, Smith CGS, Richards DA, Whitehead KJ (2007) Monolithic column-based reversed-phase liquid chromatography separation for amino acid assay in microdialysates and cerebral spinal fluid. J Chromatogr B 848:323–328

    Article  CAS  Google Scholar 

  72. Anouti S, Vandenabeele-Trambouze O, Koval D, Cottet H (2008) Heart-cutting two-dimensional capillary electrophoresis for the on-line purification and separation of derivatized amino acids. Anal Chem 80:1730–1736

    Article  PubMed  CAS  Google Scholar 

  73. Buck K, Ferger B (2008) Intrastriatal inhibition of aromatic amino acid decarboxylase prevents L-DOPA-induced dyskinesia: a bilateral reverse in vivo microdialysis study in 6-hydroxydopamine lesioned rats. Neurobiol Dis 29:210–220

    Article  PubMed  CAS  Google Scholar 

  74. Poinsot V, Gavard P, Feurer B, Couderc F (2010) Recent advances in amino acid analysis by CE. Electrophoresis 31:105–121

    Article  PubMed  CAS  Google Scholar 

  75. Niwa O, Torimitsu K, Morita M, Osborne P, Yamamoto K (1996) Concentration of extracellular l-glutamate released from cultured nerve cells measured with a small-volume online sensor. Anal Chem 68:1865–1870

    Article  PubMed  CAS  Google Scholar 

  76. Zhang MN, Liu K, Gong KP, Su L, Chen Y, Mao LQ (2005) Continuous on-line monitoring of extracellular ascorbate depletion in the rat striatum induced by global ischemia with carbon nanotube-modified glassy carbon electrode integrated into a thin-layer radial flow cell. Anal Chem 77:6234–6242

    Article  PubMed  CAS  Google Scholar 

  77. Osborne PG, Niwa O, Kato T, Yamamoto K (1998) Plastic film carbon electrodes: enzymatic modification for on-line, continuous, and simultaneous measurement of lactate and glucose using microdialysis sampling. Anal Chem 70:1701–1706

    Article  PubMed  CAS  Google Scholar 

  78. Collingridge GL, Lester RA (1989) Excitatory amino acids receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210

    Google Scholar 

  79. Wahl F, Obrenovitch TP, Hardy AM, Plotkine M, Boulu R, Symon L (1994) Extracellular glutamate during focal cerebral ischemia in rats: time course and calcium dependency. J Neurochem 63:1003–1011

    Article  PubMed  CAS  Google Scholar 

  80. Benveniste H, Huttemeier PC (1990) Microdialysis-theory and application. Prog Neurobiol 35:195–215

    Article  PubMed  CAS  Google Scholar 

  81. Obrenovitch TP, Urenjak J, Richards DA, Ueda Y, Curzon G, Symon L (1993) Extracellular neuroactive amino acids in the rat brain striatum during moderate and severe transient ischemia. J Neurochem 61:178–186

    Article  PubMed  CAS  Google Scholar 

  82. Poinsot V, Bayle C, Couderc F (2003) Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis 24:4047–4062

    Article  PubMed  CAS  Google Scholar 

  83. Zilkha E, Obrenovitch TP, Koshy A, Kusakabe H, Bennetto HP (1995) Extracellular glutamate: on-line monitoring using microdialysis coupled to enzyme-amperometric analysis. J Neurosci Methods 60:1–9

    Article  PubMed  CAS  Google Scholar 

  84. Berners MOM, Boutelle MG, Fillenz M (1994) On-line measurement of brain glutamate with an enzyme/polymer-coated tubular electrode. Anal Chem 66:2017–2021

    Article  PubMed  CAS  Google Scholar 

  85. Hayashi K, Kurita R, Horiuchi T, Niwa O (2003) Selective detection of l-glutamate using a microfluidic device integrated with an enzyme-modified pre-reactor and an electrochemical detector. Biosens Bioelectron 18:1249–1255

    Article  PubMed  CAS  Google Scholar 

  86. Yao T, Suzuki S, Nakahara T, Nishino H (1998) Highly sensitive detection of l-glutamate by on-line amperometric micro-flow analysis based on enzymatic substrate recycling. Talanta 45:917–923

    Article  PubMed  CAS  Google Scholar 

  87. Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24:125–132

    Article  PubMed  CAS  Google Scholar 

  88. Suri RE, Bargas J, Arbib MA (2001) Modeling functions of striatal dopamine modulation in learning and planning. Neuroscience 103:65–85

    Article  PubMed  CAS  Google Scholar 

  89. Denenberg VH, Kima DS, Palmiter RD (2004) The role of dopamine in learning, memory, and performance of a water escape task. Behav Brain Res 148:73–78

    Article  PubMed  CAS  Google Scholar 

  90. Jung MC, Shi GY, Borland L, Michael AC, Weber SG (2006) Simultaneous determination of biogenic monoamines in rat brain dialysates using capillary high-performance liquid chromatography with photoluminescence following electron transfer. Anal Chem 78:1755–1760

    Article  PubMed  CAS  Google Scholar 

  91. Xiang L, Lin YQ, Yu P, Su L, Mao LQ (2007) Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: a new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors. Electrochim Acta 52:4144–4152

    Article  CAS  Google Scholar 

  92. Lin YQ, Zhang ZP, Zhao LZ, Wang X, Yu P, Su L, Mao LQ (2010) A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine. Biosens Bioelectron 25:1350–1355

    Article  PubMed  CAS  Google Scholar 

  93. Hasselmo ME, Bower JM (1993) Acetylcholine and memory. Trends Neurosci 16:218–222

    Article  PubMed  CAS  Google Scholar 

  94. Huang T, Yang L, Gitzen J, Kissinger PT, Vreeke M, Heller AJ (1995) Detection of basal acetylcholine in rat-brain microdialysate. J Chromatogr B Biomed Appl 670:323–327

    Article  PubMed  CAS  Google Scholar 

  95. Nirogi R, Mudigonda K, Kandikere V, Ponnamaneni R (2010) Quantification of acetylcholine, an essential neurotransmitter, in brain microdialysis samples by liquid chromatography mass spectrometry. Biomed Chromatogr 24:39–48

    Article  PubMed  CAS  Google Scholar 

  96. Niwa O, Horiuchi T, Kurita R, Torimitsu K (1998) On-line electrochemical sensor for selective continuous measurement of acetylcholine in cultured brain tissue. Anal Chem 70:1126–1132

    Article  PubMed  CAS  Google Scholar 

  97. Walker JE (1983) Glutamate, GABA, and CNS disease: a review. Neurochem Res 8:521–550

    Article  PubMed  CAS  Google Scholar 

  98. Niwa O, Kurita R, Horiuchi T, Torimitsu K (1998) Small-volume on-line sensor for continuous measurement of γ-aminobutyric acid. Anal Chem 70:89–93

    Article  PubMed  CAS  Google Scholar 

  99. Helbok R, Schmidt JM, Kurtz P, Hanafy KA, Fernandez L, Stuart RM, Presciutti M, Ostapkovich ND, Connolly ES, Lee K, Badjatia N, Mayer SA, Claassen J (2010) Systemic glucose and brain energy metabolism after subarachnoid hemorrhage. Neurocrit Care 12:317–323

    Article  PubMed  CAS  Google Scholar 

  100. Clausen F, Hillered L, Gustafsson J (2011) Cerebral glucose metabolism after traumatic brain injury in the rat studied by 13C-glucose and microdialysis. Acta Neurochir 153:653–658

    Article  Google Scholar 

  101. Marklund N, Salci K, Ronquist G, Hillered L (2006) Energy metabolic changes in the early post-injury period following traumatic brain injury in rats. Neurochem Res 31:1085–1093

    Article  PubMed  CAS  Google Scholar 

  102. Osborne PG, Niwa O, Kato T, Yamamoto K (1997) On-line, continuous measurement of extracellular striatal glucose using microdialysis sampling and electrochemical detection. J Neurosci Methods 77:143–150

    Article  PubMed  CAS  Google Scholar 

  103. Osborne PG, Niwa O, Kato T, Yamamoto K (1996) On-line, real time measurement of extracellular brain glucose using microdialysis and electrochemical detection. Curr Sep 15:19–23

    CAS  Google Scholar 

  104. Kurita R, Hayashi K, Xu F, Yamamoto K, Kato T, Niwa O (2002) Microfluidic device integrated with pre-reactor and dual enzyme-modified microelectrodes for monitoring in vivo glucose and lactate. Sens Actuators B 87:296–303

    Article  Google Scholar 

  105. Jones DA, Parkin MC, Langemann H, Landolt H, Hopwood SE, Strong AJ, Boutelle MG (2002) On-line monitoring in neurointensive care enzyme-based electrochemical assay for simultaneous, continuous monitoring of glucose and lactate from critical care patients. J Electroanal Chem 538–539:243–252

    Google Scholar 

  106. Parkin MC, Hopwood SE, Strong AJ, Boutelle MG (2003) Resolving dynamic changes in brain metabolism using biosensors and on-line microdialysis. TrAC Trends Anal Chem 22:487–497

    Article  CAS  Google Scholar 

  107. Parkin MC, Hopwood SE, Jones DA, Hashemi P, Landolt H, Fabricius M, Lauritzen M, Boutelle MG, Strong AJ (2005) Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-linemic rodialysis: relationship with depolarisation-like events. J Cereb Blood Flow Metab 25:402–413

    Article  PubMed  CAS  Google Scholar 

  108. Hopwood SE, Parkin MC, Bezzina EL, Boutelle MG, Strong AJ (2005) Transient changes in cortical glucose and lactate levels associated with peri-infarct depolarisations, studied with rapid-sampling microdialysis. J Cereb Blood Flow Metab 25:391–401

    Article  PubMed  CAS  Google Scholar 

  109. Deeba S, Corcoles EP, Hanna BG, Pareskevas P, Aziz O, Boutelle MG, Darzi A (2008) Use of rapid sampling microdialysis for intraoperative monitoring of bowel ischemia. Dis Colon Rectum 51:1408–1413

    Article  PubMed  CAS  Google Scholar 

  110. Hashemi P, Bhatia R, Nakamura H, Dreier JP, Graf R, Strong AJ, Boutelle MG (2009) Persisting depletion of brain glucose following cortical spreading depression, despite apparent hyperaemia: evidence for risk of an adverse effect of Leão’s spreading depression. J Cereb Blood Flow Metab 29:166–175

    Article  PubMed  CAS  Google Scholar 

  111. Boutelle MG, Fellows LK, Cook C (1992) Enzyme packed bed system for the on-line measurement of glucose, glutamate, and lactate in brain microdialysate. Anal Chem 64:1790–1794

    Article  PubMed  CAS  Google Scholar 

  112. Liu SM, Shi HL, Liu WL, Furuichi T, Timmins GS, Liu KJ (2004) Interstitial pO2 in ischemic penumbra and core are differentially affected following transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 24:343–349

    Article  PubMed  CAS  Google Scholar 

  113. Rossi DJ, Brady JD, Mohr C (2007) Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10:1377–1386

    Article  PubMed  CAS  Google Scholar 

  114. Rice ME (2000) Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23:209–216

    Article  PubMed  CAS  Google Scholar 

  115. Grünewald RA (1993) Ascorbic acid in the brain. Brain Res Rev 18:123–133

    Article  PubMed  Google Scholar 

  116. Deakin MR, Kovach PM, Stutts KJ, Wightman RM (1986) Heterogeneous mechanisms of the oxidation of catechols and ascorbic-acid at carbon electrodes. Anal Chem 58:1474–1480

    Article  PubMed  CAS  Google Scholar 

  117. Derrington AM, Lennie P, Wright MJ (1979) The mechanism of peripherally evoked responses in retinal ganglion cells. J Physiol 289:299–310

    PubMed  CAS  Google Scholar 

  118. Lovick TA, Hilton SM (1985) Vasodilator and vasoconstrictor neurones of the ventrolateral medulla in the cat. Brain Res 331:353–357

    Article  PubMed  CAS  Google Scholar 

  119. Hou Y, Wu CF, Yang JY, Tu L, Gu PF, Bi XL (2005) Differential effects of clozapine on ethanol-induced ascorbic acid release in mouse and rat striatum. Neurosci Lett 380:83–87

    Article  PubMed  CAS  Google Scholar 

  120. Cheng FC, Yang LL, Yang DY, Tsai TH, Lee CW, Chen SH (2000) Monitoring of extracellular pyruvate, lactic acid, and ascorbic acid during cerebral ischemia: a microdialysis study in awake gerbils. J Chromatogr A 870:389–394

    Article  PubMed  CAS  Google Scholar 

  121. Liu K, Lin Y, Xiang L, Yu P, Su L, Mao L (2008) Comparative study of change in extracellular ascorbic acid in different brain ischemia/reperfusion models with in vivo microdialysis combined with on-line electrochemical detection. Neurochem Int 52:1247–1255

    Article  PubMed  CAS  Google Scholar 

  122. Liu K, Lin YQ, Yu P, Mao LQ (2009) Dynamic regional changes of extracellular ascorbic acid during global cerebral ischemia: Studied with in vivo microdialysis coupled with on-line electrochemical detection. Brain Res 1253:161–168

    Article  PubMed  CAS  Google Scholar 

  123. Lei B, Adachi N, Arai T (1998) Measurement of the extracellular H2O2 in the brain by microdialysis. Brain Res Protoc 3:33–36

    Article  CAS  Google Scholar 

  124. Van de Bittner GC, Dubikovskaya EA, Bertozzi CR, Chang CJ (2010) In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc Natl Acad Sci 107:21316–21321

    Article  PubMed  Google Scholar 

  125. Miller EW, Chang CJ (2007) Fluorescent probes for nitric oxide and hydrogen peroxide in cell signaling. Curr Opin Chem Biol 11:620–625

    Article  PubMed  CAS  Google Scholar 

  126. Mao LQ, Osborne PG, Yamamoto K, Kato T (2002) Continuous on-line measurement of cerebral hydrogen peroxide using enzyme-modified ring-disk plastic carbon film electrode. Anal Chem 74:3684–3689

    Article  PubMed  CAS  Google Scholar 

  127. Obrenovitch TP, Richards DA (1995) Extracellular neurotransmitter changes in cerebral ischemia. Cerebrovasc Brain Metab Rev 7:1–54

    PubMed  CAS  Google Scholar 

  128. Schapira AHV (1995) Oxidative stress in Parkinson’s disease. Neuropathol Appl Neurobiol 21:3–9

    Article  PubMed  CAS  Google Scholar 

  129. Pravda M, Bogaert L, Sarre S, Ebinger G, Kauffmann JM, Michotte Y (1997) On-line in vivo monitoring of endogenous quinones using microdialysis coupled with electrochemical detection. Anal Chem 69:2354–2361

    Article  PubMed  CAS  Google Scholar 

  130. Clapham DE (1995) Calcium signaling. Cell 80:259–268

    Article  PubMed  CAS  Google Scholar 

  131. Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350

    Article  PubMed  CAS  Google Scholar 

  132. Killilea DW, Ames BN (2008) Magnesium deficiency accelerates cellular senescence in cultured human fibroblasts. Proc Natl Acad Sci U S A 105:5768–5773

    Article  PubMed  CAS  Google Scholar 

  133. Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B, Zhao X, Govindarajan A, Zhao MG, Zhuo M, Tonegawa S, Liu G (2010) Enhancement of learning and memory by elevating brain magnesium. Neuron 65:165–177

    Article  PubMed  CAS  Google Scholar 

  134. Chung YT, Ling YC, Yang CS, Sun YC, Lee PL, Lin CY, Hong CC, Yang MH (2007) In vivo monitoring of multiple trace metals in the brain extracellular fluid of anesthetized rats by microdialysis-membrane desalter-ICPMS. Anal Chem 79:8900–8910

    Article  PubMed  CAS  Google Scholar 

  135. Lin MC, Huang YL, Liu HW, Yang DY, Lee CP, Yang LL, Cheng FC (2004) On-line microdialysis-graphite furnace atomic absorption spectrometry in the determination of brain magnesium levels in gerbils subjected to cerebral ischemia/reperfusion. J Am Coll Nutr 23:561S–565S

    Article  PubMed  CAS  Google Scholar 

  136. Zhang ZP, Zhao LZ, Lin YQ, Yu P, Mao LQ (2010) Online electrochemical measurements of Ca2+ and Mg2+ in rat brain based on divalent cation enhancement toward electrocatalytic NADH oxidation. Anal Chem 82:9885–9891

    Article  PubMed  CAS  Google Scholar 

  137. Jiang Y, Zhao H, Lin YQ, Zhu NN, Ma YR, Mao LQ (2010) Colorimetric detection of glucose in rat brain using gold nanoparticles. Angew Chem Int Ed 49:4800–4804

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is financially supported by NSF of China (Grant Nos., 90813032, 20935005, 20975104 for L. Mao, and 21045001 for Y. Lin), National Basic Research Program of China (973 Program, 2007CB935603 and 2010CB933502), and Chinese Academy of Sciences (KJCX2-YW-W25, Y2010015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanqun Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lin, Y., Zhang, Z., Mao, L. (2013). Combination of In Vivo Microdialysis with Selective Electrochemical Detection for Online Continuous Monitoring of Brain Chemistry. In: Di Giovanni, G., Di Matteo, V. (eds) Microdialysis Techniques in Neuroscience. Neuromethods, vol 75. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-173-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-173-8_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-172-1

  • Online ISBN: 978-1-62703-173-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics