Skip to main content
Book cover

Legionella pp 163–181Cite as

The Intracellular Metabolism of Legionella by Isotopologue Profiling

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 954))

Abstract

Metabolic pathways and fluxes can be analyzed under in vivo conditions by incorporation experiments using general 13C-labeled precursors. On the basis of the isotopologue compositions in amino acids or other metabolites, the incorporation rates of the supplied precursors and the pathways of their utilization can be studied in considerable detail. In this chapter, the method of isotopologue profiling is illustrated with recent work on the metabolism of intracellular living Legionella pneumophila.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Faulkner G, Garduno RA (2002) Ultrastructural analysis of differentiation in Legionella pneumophila. J Bacteriol 184:7025–7041

    Article  PubMed  CAS  Google Scholar 

  2. Garduno RA, Garduno E, Hiltz M, Hoffman PS (2002) Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms. Infect Immun 70:6273–6283

    Article  PubMed  CAS  Google Scholar 

  3. Greub G, Raoult D (2003) Morphology of Legionella pneumophila according to their location within Hartmanella vermiformis. Res Microbiol 154:619–621

    Article  PubMed  Google Scholar 

  4. Molofsky AB, Swanson MS (2004) Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53:29–40

    Article  PubMed  CAS  Google Scholar 

  5. Eisenreich W, Knispel N, Beck A (2011) Advanced methods for the study of the chemistry and the metabolism of lichens. Phyto­chemical Rev 10:445–456

    Article  CAS  Google Scholar 

  6. Eylert E, Schar J, Mertins S, Stoll R, Bacher A, Goebel W, Eisenreich W (2008) Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol Microbiol 69:1008–1017

    Article  PubMed  CAS  Google Scholar 

  7. Eisenreich W, Dandekar T, Heesemann J, Goebel W (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8:401–412

    Article  PubMed  CAS  Google Scholar 

  8. Götz A, Eylert E, Eisenreich W, Goebel W (2010) Carbon metabolism of enterobacterial human pathogens growing in epithelial colorectal adenocarcinoma (Caco-2) cells. PLoS One 5:e10586

    Article  PubMed  Google Scholar 

  9. Reeves MW, Pine L, Hutner SH, George JR, Harrell WK (1981) Metal requirements of Legionella pneumophila. J Clin Microbiol 13:688–695

    PubMed  CAS  Google Scholar 

  10. Ristroph JD, Hedlund KW, Gowda S (1981) Chemically defined medium for Legionella pneumophila growth. J Clin Microbiol 13:115–119

    PubMed  CAS  Google Scholar 

  11. Pine L, George JR, Reeves MW, Harrell WK (1979) Development of a chemically defined liquid medium for growth of Legionella pneumophila. J Clin Microbiol 9:615–626

    PubMed  CAS  Google Scholar 

  12. Tesh MJ, Morse SA, Miller RD (1983) Intermediary metabolism in Legionella pneumophila: utilization of amino acids and other compounds as energy sources. J Bacteriol 154:1104–1109

    PubMed  CAS  Google Scholar 

  13. Hoffman PS (1984) Bacterial physiology. In: Thronsberry C, Balows A, Feeley JC, Jakubowsky W (eds) Proceedings of the 2nd international symposium on legionella, American Society for Microbiology, Washington, DC, pp 61–67

    Google Scholar 

  14. Hoffman PS (2008) Microbial physiology. In: Hoffman PS, Klein T, Friedman H (eds) Legionella pneumophila: pathogenesis and immunity. Springer, pp 113–131 2008 Springer Science+Business Media, LLC, New York

    Google Scholar 

  15. Sauer JD, Bachman MA, Swanson MS (2005) The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc Natl Acad Sci USA 102:9924–9929

    Article  PubMed  CAS  Google Scholar 

  16. Wieland H, Ullrich S, Lang F, Neumeister B (2005) Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol Microbiol 55:1528–1537

    Article  PubMed  CAS  Google Scholar 

  17. Fonseca MV, Sauer J-D, Swanson MS (2008) Nutrient acquisition and assimilation strategies of Legionella pneumophila. In: Heuner K, Swanson MS (eds) Legionella – molecular microbiology. Horizon Scientific Press, Norwich, UK, pp 213–226

    Google Scholar 

  18. Keen MG, Hoffman MS (1984) Metabolic pathways and nitrogen metabolism in Legionella pneumophila. Curr Microbiol 11:81–88

    Article  CAS  Google Scholar 

  19. Sexton JA, Vogel JP (2002) Type IVB secretion by intracellular pathogens. Traffic 3:178–185

    Article  PubMed  CAS  Google Scholar 

  20. Eylert E, Herrmann V, Jules M, Gillmaier N, Lautner M, Buchrieser C, Eisenreich W, Heuner K (2010) Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates. J Biol Chem 285:22232–22243

    Article  PubMed  CAS  Google Scholar 

  21. Herrmann V, Eidner A, Rydzewski K, Bladel I, Jules M, Buchrieser C, Eisenreich W, Heuner K (2011) GamA is a eukaryotic-like glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila. Int J Med Microbiol 301:133–139

    Article  PubMed  CAS  Google Scholar 

  22. Harada E, Iida K, Shiota S, Nakayama H, Yoshida S (2010) Glucose metabolism in Legionella pneumophila: dependence on the Entner-Doudoroff pathway and connection with intracellular bacterial growth. J Bacteriol 192:2892–2899

    Article  PubMed  CAS  Google Scholar 

  23. Lee WN, Byerley LO, Bergner EA, Edmond J (1991) Mass isotopomer analysis: theoretical and practical considerations. Biol Mass Spectrom 20:451–458

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank our coworkers Nadine Gillmaier, Vroni Herrmann, Eva Eylert, Claudia Huber, Birgit Lange, and Eva Schunder for their enthusiastic help in establishing and optimizing the methods described in this article. This work was financed by grants from the Deutsche Forschungsgemeinschaft DFG SPP 1316 (Bonn, Germany) (EI 384/4-1 and HE 2845/6-1, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Heuner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Heuner, K., Eisenreich, W. (2013). The Intracellular Metabolism of Legionella by Isotopologue Profiling. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 954. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-161-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-161-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-160-8

  • Online ISBN: 978-1-62703-161-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics