Skip to main content

Synthesis of Polyethylenimine-Based Nanocarriers for Systemic Tumor Targeting of Nucleic Acids

  • Protocol
  • First Online:
Nanotechnology for Nucleic Acid Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 948))

Abstract

Nucleic acid-based therapies offer the option to treat tumors in a highly selective way, while toxicity towards healthy tissue can be avoided when proper delivery vehicles are used. We have recently developed carrier systems based on linear polyethylenimine, which after chemical coupling of proteinous or peptidic ligands can form nanosized polyplexes with plasmid DNA or RNA and deliver their payload into target cells by receptor-mediated endocytosis. This chapter describes the synthesis of linear PEI (LPEI) from a precursor polymer and the current coupling techniques and purification procedure for peptide conjugates with linear polyethylenimine. A protocol is also given for the formation and characterization of polyplexes formed with LPEI conjugate and plasmid DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301

    Article  CAS  Google Scholar 

  2. Tang MX, Szoka FC (1997) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 4:823–832

    Article  CAS  Google Scholar 

  3. Kopatz I, Remy JS, Behr JP (2004) A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. J Gene Med 6:769–776

    Article  CAS  Google Scholar 

  4. Sonawane ND, Szoka FC Jr, Verkman AS (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 278:44826–44831

    Article  CAS  Google Scholar 

  5. Ferrari S, Moro E, Pettenazzo A, Behr JP, Zacchello F, Scarpa M (1997) ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Ther 4:1100–1106

    Article  CAS  Google Scholar 

  6. Goula D, Benoist C, Mantero S, Merlo G, Levi G, Demeneix BA (1998) Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther 5:1291–1295

    Article  CAS  Google Scholar 

  7. Wightman L, Kircheis R, Rossler V, Carotta S, Ruzicka R, Kursa M, Wagner E (2001) Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 3:362–372

    Article  CAS  Google Scholar 

  8. Brissault B, Kichler A, Guis C, Leborgne C, Danos O, Cheradame H (2003) Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug Chem 14:581–587

    Article  CAS  Google Scholar 

  9. Ogris M, Wagner E (2008) Linear polyethylenimine: synthesis and transfection procedures for in vitro and in vivo. In: Friedmann T, Rossi J (eds) Gene transfer: delivery and expression of DNA and RNA, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 521–526

    Google Scholar 

  10. Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM (2005) Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci U S A 102:5679–5684

    Article  CAS  Google Scholar 

  11. Boeckle S, von Gersdorff K, van der Piepen S, Culmsee C, Wagner E, Ogris M (2004) Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med 6:1102–1111

    Article  CAS  Google Scholar 

  12. Goula D, Becker N, Lemkine GF, Normandie P, Rodrigues J, Mantero S, Levi G, Demeneix BA (2000) Rapid crossing of the pulmonary endothelial barrier by polyethylenimine/DNA complexes 965. Gene Ther 7:499–504

    Article  CAS  Google Scholar 

  13. Chollet P, Favrot MC, Hurbin A, Coll JL (2002) Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J Gene Med 4:84–91

    Article  Google Scholar 

  14. Itaka K, Harada A, Yamasaki Y, Nakamura K, Kawaguchi H, Kataoka K (2004) In situ single cell observation by fluorescence resonance energy transfer reveals fast intra-cytoplasmic delivery and easy release of plasmid DNA complexed with linear polyethylenimine. J Gene Med 6:76–84

    Article  CAS  Google Scholar 

  15. de Bruin KG, Fella C, Ogris M, Wagner E, Ruthardt N, Brauchle C (2008) Dynamics of photoinduced endosomal release of polyplexes. J Control Release 130:175–182

    Article  Google Scholar 

  16. Zintchenko A, Susha AS, Concia M, Feldmann J, Wagner E, Rogach AL, Ogris M (2009) Drug nanocarriers labeled with near-infrared-emitting quantum dots (quantoplexes): imaging fast dynamics of distribution in living animals. Mol Ther 17:1849–1856

    Article  CAS  Google Scholar 

  17. Kursa M, Walker GF, Roessler V, Ogris M, Roedl W, Kircheis R, Wagner E (2003) Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug Chem 14:222–231

    Article  CAS  Google Scholar 

  18. Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E (1999) PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 6:595–605

    Article  CAS  Google Scholar 

  19. Schwerdt A, Zintchenko A, Concia M, Roesen N, Fisher KD, Lindner LH, Issels RD, Wagner E, Ogris M (2008) Hyperthermia induced targeting of thermosensitive gene carriers to tumors. Hum Gene Ther 19:1283–1292

    Google Scholar 

  20. Smrekar B, Wightman L, Wolschek MF, Lichtenberger C, Ruzicka R, Ogris M, Rodl W, Kursa M, Wagner E, Kircheis R (2003) Tissue-dependent factors affect gene delivery to tumors in vivo. Gene Ther 10:1079–1088

    Article  CAS  Google Scholar 

  21. Fella C, Walker GF, Ogris M, Wagner E (2008) Amine-reactive pyridylhydrazone-based PEG reagents for pH-reversible PEI polyplex shielding. Eur J Pharm Sci 34:309–320

    Article  CAS  Google Scholar 

  22. Walker GF, Fella C, Pelisek J, Fahrmeir J, Boeckle S, Ogris M, Wagner E (2005) Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol Ther 11:418–425

    Article  CAS  Google Scholar 

  23. Klutz K, Schaffert D, Willhauck MJ, Grunwald GK, Haase R, Wunderlich N, Zach C, Gildehaus FJ, Senekowitsch-Schmidtke R, Goke B, Wagner E, Ogris M, Spitzweg C (2011) Epidermal growth factor receptor-targeted (131)I-therapy of liver cancer following systemic delivery of the sodium iodide symporter gene. Mol Ther 19:676–685

    Article  CAS  Google Scholar 

  24. Kircheis R, Wightman L, Schreiber A, Robitza B, Rossler V, Kursa M, Wagner E (2001) Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther 8:28–40

    Article  CAS  Google Scholar 

  25. Ogris M, Steinlein P, Carotta S, Brunner S, Wagner E (2001) DNA/polyethylenimine transfection particles: Influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS Pharm Sci 3:E21

    Article  CAS  Google Scholar 

  26. Ogris M, Walker G, Blessing T, Kircheis R, Wolschek M, Wagner E (2003) Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release 91:173–181

    Article  CAS  Google Scholar 

  27. Schafer A, Pahnke A, Schaffert D, Van Weerden WM, de Ridder CM, Rodl W, Vetter A, Spitzweg C, Kraaij R, Wagner E, Ogris M (2011) Disconnecting the yin and yang relation of epidermal growth factor receptor (EGFR) mediated delivery: a fully synthetic, EGFR-targeted gene transfer system avoiding receptor activation. Hum Gene Ther 22:1463–1473

    Google Scholar 

  28. Sidi AA, Ohana P, Benjamin S, Shalev M, Ransom JH, Lamm D, Hochberg A, Leibovitch I (2008) Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus calmette-guerin. J Urol 180:2379–2383

    Article  Google Scholar 

  29. Ungaro F, De Rosa G, Miro A, Quaglia F (2003) Spectrophotometric determination of polyethylenimine in the presence of an oligonucleotide for the characterization of controlled release formulations. J Pharm Biomed Anal 31:143–149

    Article  CAS  Google Scholar 

  30. Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E (2003) Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal Biochem 312:224–227

    Article  CAS  Google Scholar 

  31. Jeong JH, Song SH, Lim DW, Lee H, Park TG (2001) DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). J Control Release 73:391–399

    Article  CAS  Google Scholar 

  32. Schleef M, Schmidt T (2004) Animal-free production of ccc-supercoiled plasmids for research and clinical applications. J Gene Med 6(Suppl 1):S45–S53

    Article  CAS  Google Scholar 

  33. Magnusson T, Haase R, Schleef M, Wagner E, Ogris M (2011) Sustained, high transgene expression in liver with plasmid vectors using optimized promoter-enhancer combinations. J Gene Med 13:382–391

    Article  CAS  Google Scholar 

  34. Kasper JC, Schaffert D, Ogris M, Wagner E, Friess W (2011) The establishment of an up-scaled micro-mixer method allows the standardized and reproducible preparation of well-defined plasmid/LPEI polyplexes. Eur J Pharm Biopharm 77:182–185

    Article  CAS  Google Scholar 

  35. Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E (1998) The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther 5:1425–1433

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Center for Nanoscience (CeNS) and the German Research Foundation (SFB824) to M.O., and the Nanosystems Initiative Munich (NIM) to E.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Ogris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rödl, W., Schaffert, D., Wagner, E., Ogris, M. (2013). Synthesis of Polyethylenimine-Based Nanocarriers for Systemic Tumor Targeting of Nucleic Acids. In: Ogris, M., Oupicky, D. (eds) Nanotechnology for Nucleic Acid Delivery. Methods in Molecular Biology, vol 948. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-140-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-140-0_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-139-4

  • Online ISBN: 978-1-62703-140-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics