Skip to main content

Enhancing Nucleic Acid Delivery with Ultrasound and Microbubbles

  • Protocol
  • First Online:
Book cover Nanotechnology for Nucleic Acid Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 948))

Abstract

For gene therapy to work in vivo, nucleic acids need to reach the target cells without causing major side effects to the patient. In many cases the gene only has to reach a subset of cells in the body. Therefore, targeted delivery of genes to the desired tissue is a major issue in gene delivery. Many different possibilities of targeted gene delivery have been studied. A relatively novel approach to target nucleic acids and other drugs to specific regions in the body is the use of ultrasound and microbubbles. Microbubbles are gas-filled spheres with a stabilizing lipid, protein, or polymer shell. When these microbubbles enter an ultrasonic field, they start to oscillate. The bubble expansion and compression are inversely related to the pressure phases in the ultrasonic field. When microbubbles are exposed to high-intensity ultrasound they will eventually implode and fragment. This generates shockwaves and microjets which can temporarily permeate cell membranes and blood vessels. Nucleic acids or (non)-viral vectors can extravasate through these pores to gain access to the cell’s cytoplasm or the surrounding tissue. The nucleic acids can either be mixed with the microbubbles or loaded on the microbubbles. Nucleic acid-loaded microbubbles can be obtained by coupling nucleic acid-containing particles (i.e., lipoplexes) to the microbubbles. Upon ultrasound-mediated implosion of the microbubbles, the nucleic acid-containing particles will be released and will deliver their nucleic acids in the ultrasound-targeted region.

Steven K. Cool and Bart Geers contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166

    Article  CAS  Google Scholar 

  2. Duvshani-Eshet M, Machluf M (2005) Therapeutic ultrasound optimization for gene delivery: a key factor achieving nuclear DNA localization. J Control Release 108:513–528

    Article  CAS  Google Scholar 

  3. Kinoshita M, Hynynen K (2005) Intracellular delivery of Bak BH3 peptide by microbubble-enhanced ultrasound. Pharm Res 22:716–720

    Article  CAS  Google Scholar 

  4. Manome Y, Nakayama N, Nakayama K, Furuhata H (2005) Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect. Ultrasound Med Biol 31:693–702

    Article  Google Scholar 

  5. Koch S, Pohl P, Cobet U, Rainov NG (2000) Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects. Ultrasound Med Biol 26:897–903

    Article  CAS  Google Scholar 

  6. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM (2000) Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 7:2023–2027

    Article  CAS  Google Scholar 

  7. Frenkel PA, Chen S, Thai T, Shohet RV, Grayburn PA (2002) DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med Biol 28:817–822

    Article  Google Scholar 

  8. Teupe C, Richter S, Fisslthaler B, Randriamboavonjy V, Ihling C, Fleming I, Busse R, Zeiher AM, Dimmeler S (2002) Vascular gene transfer of phosphomimetic endothelial nitric oxide synthase (S1177D) using ultrasound-enhanced destruction of plasmid-loaded microbubbles improves vasoreactivity. Circulation 105:1104–1109

    Article  CAS  Google Scholar 

  9. Lentacker I, De Smedt SC, Demeester J, Van Marck V, Bracke M, Sanders NN (2007) Lipoplex-loaded microbubbles for gene delivery: A Trojan horse controlled by ultrasound. Adv Funct Mater 17:1910–1916

    Article  CAS  Google Scholar 

  10. Pitt WG, Husseini GA, Staples BJ (2004) Ultrasonic drug delivery–a general review. Expert Opin Drug Deliv 1:37–56

    Article  CAS  Google Scholar 

  11. Tinkov S, Bekeredjian R, Winter G, Coester C (2009) Microbubbles as ultrasound triggered drug carriers. J Pharm Sci 98:1935–1961

    Article  CAS  Google Scholar 

  12. Toft KG, Hustvedt SO, Hals PA, Oulie I, Uran S, Landmark K, Normann PT, Skotland T (2006) Disposition of perfluorobutane in rats after intravenous injection of Sonazoid. Ultrasound Med Biol 32:107–114

    Article  Google Scholar 

  13. Grayburn PA (2002) Current and future contrast agents. Echocardiography 19:259–265

    Article  Google Scholar 

  14. Klibanov AL (1999) Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Adv Drug Deliv Rev 37:139–157

    Article  CAS  Google Scholar 

  15. Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R (2004) Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 56:1291–1314

    Article  CAS  Google Scholar 

  16. Newman CM, Bettinger T (2007) Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 14:465–475

    Article  CAS  Google Scholar 

  17. Brujan EA (2004) The role of cavitation microjets in the therapeutic applications of ultrasound. Ultrasound Med Biol 30:381–387

    Article  CAS  Google Scholar 

  18. Collis J, Manasseh R, Liovic P, Tho P, Ooi A, Petkovic-Duran K, Zhu Y (2010) Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics 50:273–279

    Article  CAS  Google Scholar 

  19. Marmottant P, Hilgenfeldt S (2003) Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423:153–156

    Article  CAS  Google Scholar 

  20. Postema M, van Wamel A, Lancee CT, de Jong N (2004) Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med Biol 30:827–840

    Article  Google Scholar 

  21. Sundaram J, Mellein BR, Mitragotri S (2003) An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J 84:3087–3101

    Article  CAS  Google Scholar 

  22. Lentacker I, Wang N, Vandenbroucke RE, Demeester J, De Smedt SC, Sander NN (2009) Ultrasound exposure of lipoplex loaded microbubbles facilitates direct cytoplasmic entry of the lipoplexes. Mol Pharm 6:457–467

    Article  CAS  Google Scholar 

  23. Remaut K, Sanders NN, De Geest BG, Braeckmans K, Demeester J, De Smedt SC (2007) Nucleic acid delivery: where material sciences and bio-sciences meet. Mat Sci Eng R 58:117–161

    Article  Google Scholar 

  24. Vandenbroucke RE, Lentacker I, Demeester J, De Smedt SC, Sanders NN (2008) Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles. J Control Release 126:265–273

    Article  CAS  Google Scholar 

  25. Bekeredjian R, Kroll RD, Fein E, Tinkov S, Coester C, Winter G, Katus HA, Kulaksiz H (2007) Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas. Ultrasound Med Biol 33:1592–1598

    Article  Google Scholar 

  26. Palussiere J, Salomir R, Le Bail B, Fawaz R, Quesson B, Grenier N, Moonen CT (2003) Feasibility of MR-guided focused ultrasound with real-time temperature mapping and continuous sonication for ablation of VX2 carcinoma in rabbit thigh. Magn Reson Med 49:89–98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven K. Cool .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cool, S.K., Geers, B., Lentacker, I., De Smedt, S.C., Sanders, N.N. (2013). Enhancing Nucleic Acid Delivery with Ultrasound and Microbubbles. In: Ogris, M., Oupicky, D. (eds) Nanotechnology for Nucleic Acid Delivery. Methods in Molecular Biology, vol 948. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-140-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-140-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-139-4

  • Online ISBN: 978-1-62703-140-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics