Skip to main content

Surface- and Hydrogel-Mediated Delivery of Nucleic Acid Nanoparticles

  • Protocol
  • First Online:
Book cover Nanotechnology for Nucleic Acid Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 948))

Abstract

Gene expression within a cell population can be directly altered through gene delivery approaches. Traditionally for nonviral delivery, plasmids or siRNA molecules, encoding or targeting the gene of interest, are packaged within nanoparticles. These nanoparticles are then delivered to the media surrounding cells seeded onto tissue culture plastic; this technique is termed bolus delivery. Although bolus delivery is widely utilized to screen for efficient delivery vehicles and to study gene function in vitro, this delivery strategy may not result in efficient gene transfer for all cell types or may not identify those delivery vehicles that will be efficient in vivo. Furthermore, bolus delivery cannot be used in applications where patterning of gene expression is needed. In this chapter, we describe methods that incorporate material surfaces (i.e., surface-mediated delivery) or hydrogel scaffolds (i.e., hydrogel-mediated delivery) to efficiently deliver genes. This chapter includes protocols for surface-mediated DNA delivery focusing on the simplest and most effective methods, which include nonspecific immobilization of DNA complexes (both polymer and lipid vectors) onto serum-coated cell culture polystyrene and self-assembled monolayers of alkanethiols on gold. Also, protocols for the encapsulation of DNA/cationic polymer nanoparticles into hydrogel scaffolds are described, including methods for the encapsulation of low amounts of DNA (<0.2 μg/μL) and high amounts of DNA (>0.2 μg/μL) since incorporation of high amounts of DNA poses significant challenges due to aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengali Z, Pannier AK, Segura T, Anderson BC, Jang JH, Mustoe TA, Shea LD (2005) Gene delivery through cell culture substrate adsorbed DNA complexes. Biotechnol Bioeng 90:290–302

    Article  CAS  Google Scholar 

  2. Segura T, Shea LD (2002) Surface-tethered DNA complexes for enhanced gene delivery. Bioconjug Chem 13:621–629

    Article  CAS  Google Scholar 

  3. Segura T, Volk MJ, Shea LD (2003) Substrate-mediated DNA delivery: role of the cationic polymer structure and extent of modification. J Control Release 93:69–84

    Article  CAS  Google Scholar 

  4. Bengali Z, Rea JC, Gibly RF, Shea LD (2009) Efficacy of immobilized polyplexes and lipoplexes for substrate-mediated gene delivery. Biotechnol Bioeng 102:1679–1691

    Article  CAS  Google Scholar 

  5. Bengali Z, Rea JC, Shea LD (2007) Gene expression and internalization following vector adsorption to immobilized proteins: dependence on protein identity and density. J Gene Med 9:668–678

    Article  CAS  Google Scholar 

  6. Bengali Z, Shea LD (2005) Gene delivery by immobilization to cell-adhesive substrates. MRS Bull 30:659–662

    Article  CAS  Google Scholar 

  7. De Laporte L, Yan AL, Shea LD (2009) Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials 30:2361–2368

    Article  Google Scholar 

  8. Jang JH, Bengali Z, Houchin TL, Shea LD (2006) Surface adsorption of DNA to tissue engineering scaffolds for efficient gene ­delivery. J Biomed Mater Res A 77:50–58

    Google Scholar 

  9. Pannier AK, Anderson BC, Shea LD (2005) Substrate-mediated delivery from self-assembled monolayers: effect of surface ionization, hydrophilicity, and patterning. Acta Biomater 1:511–522

    Article  Google Scholar 

  10. Pannier AK, Wieland JA, Shea LD (2008) Surface polyethylene glycol enhances substrate-mediated gene delivery by nonspecifically immobilized complexes. Acta Biomater 4:26–39

    Article  CAS  Google Scholar 

  11. Bielinska AU, Yen A, Wu HL, Zahos KM, Sun R, Weiner ND, Baker JR Jr, Roessler BJ (2000) Application of membrane-based dendrimer/DNA complexes for solid phase transfection in vitro and in vivo. Biomaterials 21:877–887

    Article  CAS  Google Scholar 

  12. Kneuer C, Sameti M, Bakowsky U, Schiestel T, Schirra H, Schmidt H, Lehr CM (2000) A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug Chem 11:926–932

    Article  CAS  Google Scholar 

  13. Manuel WS, Zheng JI, Hornsby PJ (2001) Transfection by polyethyleneimine-coated microspheres. J Drug Target 9:15–22

    Article  CAS  Google Scholar 

  14. Zhang JT, Chua LS, Lynn DM (2004) Multilayered thin films that sustain the release of functional DNA under physiological conditions. Langmuir 20:8015–8021

    Article  CAS  Google Scholar 

  15. Levy RJ, Song C, Tallapragada S, DeFelice S, Hinson JT, Vyavahare N, Connolly J, Ryan K, Li Q (2001) Localized adenovirus gene delivery using antiviral IgG complexation. Gene Ther 8:659–667

    Article  CAS  Google Scholar 

  16. Segura T, Chung PH, Shea LD (2005) DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach. Biomaterials 26:1575–1584

    Article  CAS  Google Scholar 

  17. Houchin-Ray T, Whittlesey KJ, Shea LD (2007) Spatially patterned gene delivery for localized neuron survival and neurite extension. Mol Ther 15:705–712

    CAS  Google Scholar 

  18. Bonadio J, Smiley E, Patil P, Goldstein S (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 5:753–759

    Article  CAS  Google Scholar 

  19. Chun KW, Lee JB, Kim SH, Park TG (2005) Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels. Biomaterials 26:3319–3326

    Article  CAS  Google Scholar 

  20. Quick DJ, Anseth KS (2004) DNA delivery from photocrosslinked PEG hydrogels: encapsulation efficiency, release profiles, and DNA quality. J Control Release 96:341–351

    Article  CAS  Google Scholar 

  21. Kong HJ, Kim ES, Huang YC, Mooney DJ (2008) Design of biodegradable hydrogel for the local and sustained delivery of angiogenic plasmid DNA. Pharm Res 25:1230–1238

    Article  CAS  Google Scholar 

  22. Kasper FK, Jerkins E, Tanahashi K, Barry MA, Tabata Y, Mikos AG (2006) Characterization of DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres in vitro. J Biomed Mater Res Part A 78A:823–835

    Article  CAS  Google Scholar 

  23. Megeed Z, Haider M, Li D, O’Malley BW Jr, Cappello J, Ghandehari H (2004) In vitro and in vivo evaluation of recombinant silk-elastin like hydrogels for cancer gene therapy. J Control Release 94:433–445

    Article  CAS  Google Scholar 

  24. Jang JH, Rives CB, Shea LD (2005) Plasmid delivery in vivo from porous tissue-engineering scaffolds: transgene expression and cellular transfection. Mol Ther 12:475–483

    Article  CAS  Google Scholar 

  25. Lei P, Padmashali RM, Andreadis ST (2009) Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels. Biomaterials 30:3790–3799

    Article  CAS  Google Scholar 

  26. Wieland JA, Houchin-Ray TL, Shea LD (2007) Non-viral vector delivery from PEG-hyaluronic acid hydrogels. J Control Release 120:233–241

    Article  CAS  Google Scholar 

  27. Saul JM, Linnes MP, Ratner BD, Giachelli CM, Pun SH (2007) Delivery of non-viral gene carriers from sphere-templated fibrin scaffolds for sustained transgene expression. Biomaterials 28:4705–4716

    Article  CAS  Google Scholar 

  28. Trentin D, Hall H, Wechsler S, Hubbell JA (2006) Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1alpha variant for local induction of angiogenesis. Proc Natl Acad Sci USA 103:2506–2511

    Article  CAS  Google Scholar 

  29. Trentin D, Hubbell J, Hall H (2005) Non-viral gene delivery for local and controlled DNA release. J Control Release 102:263–275

    Article  CAS  Google Scholar 

  30. Lei YG, Segura T (2009) DNA delivery from matrix metal lop roteinase degradable poly(ethylene glycol) hydrogels to mouse cloned mesenchymal stem cells. Biomaterials 30:254–265

    Article  CAS  Google Scholar 

  31. Amstein CF, Hartman PA (1975) Adaption of plastic surfaces for tissue culture by glow discharge. J Clin Microbiol 2:46–54

    CAS  Google Scholar 

  32. Ramsey WS, Hertl W, Nowlan ED, Binkowski NJ (1984) Surface treatments and cell attachment. In Vitro 20:802–808

    Article  CAS  Google Scholar 

  33. West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32:241–244

    Article  CAS  Google Scholar 

  34. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    Article  CAS  Google Scholar 

  35. Pannier AK, Ariazi EA, Bellis AD, Bengali Z, Jordan VC, Shea LD (2007) Bioluminescence imaging for assessment and normalization in transfected cell arrays. Biotechnol Bioeng 98:486–497

    Article  CAS  Google Scholar 

  36. Lei Y, Huang S, Sharif-Kashani P, Chen Y, Kavehpour P, Segura T (2010) Incorporation of active DNA/cationic polymer polyplexes into hydrogel scaffolds. Biomaterials 31:9106–9116

    Article  CAS  Google Scholar 

  37. www.invitrogen.com (2011) Lipofectamine 2000

  38. Abrahams JM, et al. (2002) Endovascular microcoil gene delivery using immobilized anti-adenovirus antibody for vector tethering. Stroke 33(5): 1376–82

    Google Scholar 

  39. Klugherz BD, et al. (2002) Gene delivery to pig coronary arteries from stents carrying antibody-tethered adenovirus. Hum Gene Ther, 13(3):443–54.

    Google Scholar 

  40. Pandori M, Hobson D, and Sano T (2002) Adenovirus-microbead conjugates possess enhanced infectivity: a new strategy for localized gene delivery. Virology. 299(2):204–12.

    Google Scholar 

  41. Hobson DA, Pandori MW, and Sano T (2003) In situ transduction of target cells on solid surfaces by immobilized viral vectors. BMC Biotechnol 3(1):4

    Google Scholar 

  42. Kofron MD and Laurencin CT (2004) Development of a calcium phosphate co-precipitate/poly(lactide-co-glycolide) DNA delivery system: release kinetics and cellular transfection studies. Biomaterials 25(13):2637–43.

    Google Scholar 

  43. Katz JM, Roth CM, and Dunn MG, Factors that influence transgene expression and cell viability on DNA-PEI-seeded collagen films. Tissue Eng 11(9-10):1398–406.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Talar Tokatlian, Shiva Gojgini, Tim Martin, Sarah Plautz, and Tadas Kasputis for helpful comments and suggestions. We also like to thank the National Institutes of Health (R21EB009516, TS), the National Science Foundation (CAREER 0747539, TS), the American Heart Association (10SDG2640217), the University of Nebraska Foundation (Layman Funds), the Nebraska Research Initiative, NSF EPSCoR First Award, USDA CSREES-Nebraska (NEB-21-146), University of Nebraska-Lincoln IANR Strategic Investments Funds, and the J.A. Woollam Co. for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Segura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pannier, A.K., Segura, T. (2013). Surface- and Hydrogel-Mediated Delivery of Nucleic Acid Nanoparticles. In: Ogris, M., Oupicky, D. (eds) Nanotechnology for Nucleic Acid Delivery. Methods in Molecular Biology, vol 948. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-140-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-140-0_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-139-4

  • Online ISBN: 978-1-62703-140-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics