Skip to main content
Book cover

siRNA Design pp 291–314Cite as

Production and Application of Long dsRNA in Mammalian Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 942))

Abstract

Double-stranded RNA (dsRNA) is involved in different biological processes. At least three different pathways can respond to dsRNA in mammals. One of these pathways is RNA interference (RNAi) where long dsRNA induces sequence-specific degradation of transcripts carrying sequences complementary to dsRNA. Long dsRNA is also a potent trigger of the interferon pathway, a sequence-independent response that leads to global suppression of translation and global RNA degradation. In addition, dsRNA can be edited by adenosine deamination, which may result in nuclear retention and degradation of dsRNA or in alteration of RNA coding potential. Here, we provide a technical review summarizing different strategies of long dsRNA usage. While the review is largely focused on long dsRNA-induced RNAi in mammalian cells, it also provides helpful information on both the in vitro production and in vivo expression of dsRNAs. We present an overview of currently available vectors for dsRNA expression and provide the latest update on oocyte-specific transgenic RNAi approaches.

Katerina Chalupnikova and Jana Nejepinska contributed equally to this article.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  Google Scholar 

  2. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  CAS  Google Scholar 

  3. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  Google Scholar 

  4. Caplen NJ, Fleenor J, Fire A et al (2000) dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252:95–105

    Article  CAS  Google Scholar 

  5. Clemens JC, Worby CA, Simonson-Leff N et al (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 97:6499–6503

    Article  CAS  Google Scholar 

  6. Hammond SM, Bernstein E, Beach D et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  CAS  Google Scholar 

  7. Ui-Tei K, Zenno S, Miyata Y et al (2000) Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett 479:79–82

    Article  CAS  Google Scholar 

  8. Cullen BR (2006) Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat Immunol 7:563–567

    Article  CAS  Google Scholar 

  9. Gantier MP, Williams BR (2007) The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev 18:363–371

    Article  CAS  Google Scholar 

  10. Garcia MA, Gil J, Ventoso I et al (2006) Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70:1032–1060

    Article  CAS  Google Scholar 

  11. Silverman RH (2007) A scientific journey through the 2–5A/RNase L system. Cytokine Growth Factor Rev 18:381–388

    Article  CAS  Google Scholar 

  12. Silverman RH (2007) Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81:12720–12729

    Article  CAS  Google Scholar 

  13. Judge AD, Sood V, Shaw JR et al (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23:457–462

    Article  CAS  Google Scholar 

  14. Stein P, Zeng F, Pan H et al (2005) Absence of non-specific effects of RNA interference triggered by long double-stranded RNA in mouse oocytes. Dev Biol 286:464–471

    Article  CAS  Google Scholar 

  15. Yang S, Tutton S, Pierce E et al (2001) Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol Cell Biol 21:7807–7816

    Article  CAS  Google Scholar 

  16. Hornung V, Guenthner-Biller M, Bourquin C et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270

    Article  CAS  Google Scholar 

  17. Sioud M (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 348:1079–1090

    Article  CAS  Google Scholar 

  18. Marques JT, Devosse T, Wang D et al (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 24:559–565

    Article  CAS  Google Scholar 

  19. Svoboda P, Stein P (2009) RNAi experiments in mouse oocytes and early embryos. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5134

    Google Scholar 

  20. Keegan LP, Leroy A, Sproul D et al (2004) Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. Genome Biol 5:209

    Article  Google Scholar 

  21. Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    Article  CAS  Google Scholar 

  22. Kumar A, Crawford K, Close L et al (1997) Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proc Natl Acad Sci U S A 94:4406–4411

    Article  CAS  Google Scholar 

  23. Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349

    Article  CAS  Google Scholar 

  24. DeCerbo J, Carmichael GG (2005) Retention and repression: fates of hyperedited RNAs in the nucleus. Curr Opin Cell Biol 17:302–308

    Article  CAS  Google Scholar 

  25. Nejepinska J, Flemr M, Svoboda P (2012) The canonical RNA interference pathway in animals. In: Mallick B, Ghosh Z (eds) Regulatory RNAs. Springer, Heidelberg, p 623

    Google Scholar 

  26. Tam OH, Aravin AA, Stein P et al (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538

    Article  CAS  Google Scholar 

  27. Watanabe T, Totoki Y, Toyoda A et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    Article  CAS  Google Scholar 

  28. Babiarz JE, Ruby JG, Wang Y et al (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22:2773–2785

    Article  CAS  Google Scholar 

  29. Smalheiser NR, Lugli G, Thimmapuram J et al (2011) Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training. RNA 17:166–181

    Article  CAS  Google Scholar 

  30. Fellmann C, Zuber J, McJunkin K et al (2011) Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol Cell 41:733–746

    Article  CAS  Google Scholar 

  31. Taxman DJ, Livingstone LR, Zhang J et al (2006) Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol 6:7

    Article  Google Scholar 

  32. Olson A, Sheth N, Lee JS et al (2006) RNAi Codex: a portal/database for short-hairpin RNA (shRNA) gene-silencing constructs. Nucleic Acids Res 34:D153–D157

    Article  CAS  Google Scholar 

  33. Birmingham A, Anderson EM, Reynolds A et al (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204

    Article  CAS  Google Scholar 

  34. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  Google Scholar 

  35. Billy E, Brondani V, Zhang H et al (2001) Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc Natl Acad Sci U S A 98:14428–14433

    Article  CAS  Google Scholar 

  36. Tran N, Raponi M, Dawes IW et al (2004) Control of specific gene expression in mammalian cells by co-expression of long complementary RNAs. FEBS Lett 573:127–134

    Article  CAS  Google Scholar 

  37. Paddison PJ, Caudy AA, Hannon GJ (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci U S A 99:1443–1448

    Article  CAS  Google Scholar 

  38. Gan L, Anton KE, Masterson BA et al (2002) Specific interference with gene expression and gene function mediated by long dsRNA in neural cells. J Neurosci Methods 121:151–157

    Article  CAS  Google Scholar 

  39. Yi CE, Bekker JM, Miller G et al (2003) Specific and potent RNA interference in terminally differentiated myotubes. J Biol Chem 278:934–939

    Article  CAS  Google Scholar 

  40. Shinagawa T, Ishii S (2003) Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev 17:1340–1345

    Article  CAS  Google Scholar 

  41. Wang J, Tekle E, Oubrahim H et al (2003) Stable and controllable RNA interference: investigating the physiological function of glutathionylated actin. Proc Natl Acad Sci U S A 100:5103–5106

    Article  CAS  Google Scholar 

  42. Bhargava A, Dallman MF, Pearce D et al (2004) Long double-stranded RNA-mediated RNA interference as a tool to achieve site-specific silencing of hypothalamic neuropeptides. Brain Res Brain Res Protoc 13:115–125

    Article  CAS  Google Scholar 

  43. Kabilova TO, Vladimirova AV, Chernolovskaya EL et al (2006) Arrest of cancer cell proliferation by dsRNAs. Ann N Y Acad Sci 1091:425–436

    Article  CAS  Google Scholar 

  44. Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  Google Scholar 

  45. Stein P, Svoboda P, Anger M et al (2003) RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. RNA 9:187–192

    Article  CAS  Google Scholar 

  46. Konstantinova P, de Vries W, Haasnoot J et al (2006) Inhibition of human immunodeficiency virus type 1 by RNA interference using long-hairpin RNA. Gene Ther 13:1403–1413

    Article  CAS  Google Scholar 

  47. Valencia P, Dias AP, Reed R (2008) Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc Natl Acad Sci U S A 105:3386–3391

    Article  CAS  Google Scholar 

  48. Svoboda P, Stein P, Schultz RM (2001) RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. Biochem Biophys Res Commun 287:1099–1104

    Article  CAS  Google Scholar 

  49. Hunter T, Hunt T, Jackson RJ et al (1975) The characteristics of inhibition of protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates. J Biol Chem 250:409–417

    CAS  Google Scholar 

  50. Svoboda P, Stein P, Hayashi H et al (2000) Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127:4147–4156

    CAS  Google Scholar 

  51. Wianny F, Zernicka-Goetz M (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2:70–75

    Article  CAS  Google Scholar 

  52. Akimov IA, Kabilova TO, Vlassov VV et al (2009) Inhibition of human cancer-cell proliferation by long double-stranded RNAs. Oligonucleotides 19:31–40

    Article  CAS  Google Scholar 

  53. Nejepinska J, Malik R, Filkowski J et al (2012) dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells. Nucleic Acids Res 40(1):399–413

    Article  CAS  Google Scholar 

  54. Geiss G, Jin G, Guo J et al (2001) A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J Biol Chem 276:30178–30182

    CAS  Google Scholar 

  55. Bantounas I, Phylactou LA, Uney JB (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 33:545–557

    Article  CAS  Google Scholar 

  56. Hou X, Omi M, Harada H et al (2011) Conditional knockdown of target gene expression by tetracycline regulated transcription of double strand RNA. Dev Growth Differ 53:69–75

    Article  CAS  Google Scholar 

  57. Dai P, Nakagami T, Tanaka H et al (2007) Cx43 mediates TGF-beta signaling through competitive Smads binding to microtubules. Mol Biol Cell 18:2264–2273

    Article  CAS  Google Scholar 

  58. Koster MI, Dai D, Marinari B et al (2007) p63 induces key target genes required for epidermal morphogenesis. Proc Natl Acad Sci U S A 104:3255–3260

    Article  CAS  Google Scholar 

  59. Maekawa T, Shinagawa T, Sano Y et al (2007) Reduced levels of ATF-2 predispose mice to mammary tumors. Mol Cell Biol 27:1730–1744

    Article  CAS  Google Scholar 

  60. Zipperlen PBaP (2005) Comparison of a range of approaches for RNAi in human cells. QIAGEN News, QIAGEN, Institute of Molecular Biology, University of Zurich, Zurich, Switzerland

    Google Scholar 

  61. Svoboda P (2009) Cloning a transgene for transgenic RNAi in mouse oocytes. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5134

    Google Scholar 

  62. Ma J, Zeng F, Schultz RM et al (2006) Basonuclin: a novel mammalian maternal-effect gene. Development 133:2053–2062

    Article  CAS  Google Scholar 

  63. Han SJ, Chen R, Paronetto MP et al (2005) Wee1B is an oocyte-specific kinase involved in the control of meiotic arrest in the mouse. Curr Biol 15:1670–1676

    Article  CAS  Google Scholar 

  64. Fedoriw AM, Stein P, Svoboda P et al (2004) Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 303:238–240

    Article  CAS  Google Scholar 

  65. Stein P, Svoboda P, Schultz RM (2003) Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Dev Biol 256:187–193

    Article  CAS  Google Scholar 

  66. Yu J, Deng M, Medvedev S et al (2004) Transgenic RNAi-mediated reduction of MSY2 in mouse oocytes results in reduced fertility. Dev Biol 268:195–206

    Article  CAS  Google Scholar 

  67. Racki WJ, Richter JD (2006) CPEB controls oocyte growth and follicle development in the mouse. Development 133:4527–4537

    Article  CAS  Google Scholar 

  68. Igarashi H, Knott JG, Schultz RM et al (2007) Alterations of PLCbeta1 in mouse eggs change calcium oscillatory behavior following fertilization. Dev Biol 312:321–330

    Article  CAS  Google Scholar 

  69. Arnold DR, Francon P, Zhang J et al (2008) Stem-loop binding protein expressed in growing oocytes is required for accumulation of mRNAs encoding histones H3 and H4 and for early embryonic development in the mouse. Dev Biol 313:347–358

    Article  CAS  Google Scholar 

  70. Wan LB, Pan H, Hannenhalli S et al (2008) Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. Development 135:2729–2738

    Article  CAS  Google Scholar 

  71. Baumann C, Viveiros MM, De La Fuente R (2010) Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo. PLoS Genet 6:e1001137

    Article  Google Scholar 

  72. Sarnova L, Malik R, Sedlacek R et al (2010) Shortcomings of short hairpin RNA-based transgenic RNA interference in mouse oocytes. J Negat Results Biomed 9:8

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Radek Malik for help with preparation and Camille Du Roure for text revision of this manuscript. This work was supported by the GACR 204/09/0085, EMBO SDIG program #1488, and the Purkynje Fellowship to PS. JN is supported in part by Faculty of Science, Charles University in Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Chalupnikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chalupnikova, K., Nejepinska, J., Svoboda, P. (2013). Production and Application of Long dsRNA in Mammalian Cells. In: Taxman, D. (eds) siRNA Design. Methods in Molecular Biology, vol 942. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-119-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-119-6_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-118-9

  • Online ISBN: 978-1-62703-119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics