Skip to main content

Design and Chemical Modification of Synthetic Short shRNAs as Potent RNAi Triggers

  • Protocol
  • First Online:
siRNA Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 942))

Abstract

Synthetic shRNAs that are too short to be Dicer substrates (short shRNAs or sshRNAs) can be highly potent RNAi effectors when properly designed, with activities similar to or more potent than the more commonly used siRNAs targeting the same sequences. sshRNAs can be designed in two possible orientations: left- or right-hand loop, designated L-sshRNAs and R-sshRNAs, respectively. Because L- and R-sshRNAs are processed by the RNAi machinery in different ways, optimal designs for the two formats diverge in several key aspects. Here, we describe the principles of design and chemical modification of highly effective L- and R-sshRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329

    Article  CAS  Google Scholar 

  2. Chang K, Elledge SJ, Hannon GJ (2006) Lessons from nature: microRNA-based shRNA libraries. Nat Methods 3:707–714

    Article  CAS  Google Scholar 

  3. Bernards R, Brummelkamp TR, Beijersbergen RL (2006) shRNA libraries and their use in cancer genetics. Nat Methods 3:701–706

    Article  CAS  Google Scholar 

  4. Fewell GD, Schmitt K (2006) Vector-based RNAi approaches for stable, inducible and genome-wide screens. Drug Discov Today 11:975–982

    Article  CAS  Google Scholar 

  5. Amarzguioui M, Lundberg P, Cantin E, Hagstrom J, Behlke MA, Rossi JJ (2006) Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc 1:508–517

    Article  CAS  Google Scholar 

  6. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816–820

    Article  CAS  Google Scholar 

  7. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  Google Scholar 

  8. Wang Q, Contag CH, Ilves H, Johnston BH, Kaspar RL (2005) Small hairpin rnas efficiently inhibit hepatitis C IRES-mediated gene expression in human tissue culture cells and a mouse model. Mol Ther 12:562–568

    Article  CAS  Google Scholar 

  9. Ge Q, Ilves H, Dallas A, Kumar P, Shorenstein J, Kazakov SA, Johnston BH (2010) Minimal-length short hairpin RNAs: the relationship of structure and RNAi activity. RNA 16:106–117

    Article  CAS  Google Scholar 

  10. Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, Hannon GJ, Cleary MA (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231

    Article  CAS  Google Scholar 

  11. McManus MT, Petersen CP, Haines BB, Chen J, Sharp PA (2002) Gene silencing using micro-RNA designed hairpins. RNA 8:842–850

    Article  CAS  Google Scholar 

  12. Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, Tuschl T (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 13:83–105

    Article  CAS  Google Scholar 

  13. McManus MT, Haines BB, Dillon CP, Whitehurst CE, van Parijs L, Chen J, Sharp PA (2002) Small interfering RNA-mediated gene silencing in T lymphocytes. J Immunol 169:5754–5760

    CAS  Google Scholar 

  14. Daly C, Coyle S, McBride S, O’Driscoll L, Daly N, Scanlon K, Clynes M (1996) mdr1 ribozyme mediated reversal of the multi-drug resistant phenotype in human lung cell lines. Cytotechnology 19:199–205

    Article  CAS  Google Scholar 

  15. Vlassov AV, Korba B, Farrar K, Mukerjee S, Seyhan AA, Ilves H, Kaspar RL, Leake D, Kazakov SA, Johnston BH (2007) shRNAs targeting hepatitis C: effects of sequence and structural features, and comparision with siRNA. Oligonucleotides 17:223–236

    Article  CAS  Google Scholar 

  16. Ge Q, Dallas A, Ilves H, Shorenstein J, Behlke MA, Johnston BH (2010) Effects of chemical modification on the potency, serum stability, and immunostimulatory properties of short shRNAs. RNA 16:118–130

    Article  CAS  Google Scholar 

  17. Dallas A, Ilves H, Ge Q, Kumar P, Shorenstein J, Kazakov SA, Cuellar TL, McManus MT, Behlke MA, Johnston BH (2012) Right- and left-loop short shRNAs have distinct and unusual mechanisms of gene silencing. Nucleic Acids Res. [Epub ahead of print]. doi:10.1093/nar/gks662.

    Google Scholar 

  18. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  CAS  Google Scholar 

  19. Seyhan AA, Vlassov AV, Ilves H, Egry L, Kaspar RL, Kazakov SA, Johnston BH (2005) Complete, gene-specific siRNA libraries: production and expression in mammalian cells. RNA 11:837–846

    Article  CAS  Google Scholar 

  20. Shirane D, Sugao K, Namiki S, Tanabe M, Iino M, Hirose K (2004) Enzymatic production of RNAi libraries from cDNAs. Nat Genet 36:190–196

    Article  CAS  Google Scholar 

  21. Yang D, Buchholz F, Huang Z, Goga A, Chen CY, Brodsky FM, Bishop JM (2002) Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci USA 99:9942–9947

    Article  CAS  Google Scholar 

  22. Amarzguioui M, Rossi JJ (2008) Principles of Dicer substrate (D-siRNA) design and function. Methods Mol Biol 442:3–10

    Article  CAS  Google Scholar 

  23. Pei Y, Tuschl T (2006) On the art of identifying effective and specific siRNAs. Nat Methods 3:670–676

    Article  CAS  Google Scholar 

  24. Behlke MA (2008) Chemical modification of siRNAs for in vivo use. Oligonucleotides 18:305–319

    Article  CAS  Google Scholar 

  25. Watts JK, Deleavey GF, Damha MJ (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13:842–855

    Article  CAS  Google Scholar 

  26. Judge A, MacLachlan I (2008) Overcoming the innate immune response to small interfering RNA. Hum Gene Ther 19:111–124

    Article  CAS  Google Scholar 

  27. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007

    Article  CAS  Google Scholar 

  28. Robbins M, Judge A, MacLachlan I (2009) siRNA and innate immunity. Oligonucleotides 19:89–102

    Article  CAS  Google Scholar 

  29. Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12:1197–1205

    Article  CAS  Google Scholar 

  30. Debart F, Abes S, Deglane G, Moulton HM, Clair P, Gait MJ, Vasseur JJ, Lebleu B (2007) Chemical modifications to improve the cellular uptake of oligonucleotides. Curr Top Med Chem 7:727–737

    Article  CAS  Google Scholar 

  31. Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2:711–719

    Article  CAS  Google Scholar 

  32. Manche L, Green SR, Schmedt C, Mathews MB (1992) Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol 12:5238–5248

    CAS  Google Scholar 

  33. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    Article  Google Scholar 

  34. Robbins M, Judge A, Liang L, McClintock K, Yaworski E, MacLachlan I (2007) 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther 15:1663–1669

    Article  CAS  Google Scholar 

  35. Judge AD, Bola G, Lee AC, MacLachlan I (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13:494–505

    Article  CAS  Google Scholar 

  36. Cekaite L, Furset G, Hovig E, Sioud M (2007) Gene expression analysis in blood cells in response to unmodified and 2′-modified siRNAs reveals TLR-dependent and independent effects. J Mol Biol 365:90–108

    Article  CAS  Google Scholar 

  37. Levin AA (1999) A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1489:69–84

    Article  CAS  Google Scholar 

  38. Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644

    Article  CAS  Google Scholar 

  39. Ranjith-Kumar CT, Murali A, Dong W, Srisathiyanarayanan D, Vaughan R, Ortiz-Alacantara J, Bhardwaj K, Li X, Li P, Kao CC (2009) Agonist and antagonist recognition by RIG-I, a cytoplasmic innate immunity receptor. J Biol Chem 284:1155–1165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Johnston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dallas, A., Johnston, B.H. (2013). Design and Chemical Modification of Synthetic Short shRNAs as Potent RNAi Triggers. In: Taxman, D. (eds) siRNA Design. Methods in Molecular Biology, vol 942. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-119-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-119-6_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-118-9

  • Online ISBN: 978-1-62703-119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics