Skip to main content

Investigation of the Possible Role of TRP Channels in Schizophrenia

  • Protocol
  • First Online:
  • 989 Accesses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Schizophrenia is a debilitating psychiatric disorder. The limitations of current treatments for schizophrenia have led to an ongoing search for new drug targets. The observations that subjects with schizophrenia have impaired thermoregulation, are less sensitive to pain than normal subjects, and exhibit reduced niacin flare responses suggested that TRPV1 channels, and possibly also other temperature-sensitive TRPs that are co-expressed with TRPV1 on sensory neurons, might be linked with schizophrenia. In order to model deficit in function of TRP channels in animals, capsaicin treatment of neonatal rats was used to induce lifelong loss of a high proportion of primary afferent neurons that co-express TRPV1 and related TRP channels. The methods used to test the proposal that TRPV1 deficit induces brain and behavioral changes expected in an animal model of schizophrenia are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Prasad KM, Talkowski ME, Chowdari KV, McClain L, Yolken RH, Nimgaonkar VL (2010) Candidate genes and their interactions with other genetic/environmental risk factors in the etiology of schizophrenia. Brain Res Bull 83:86–92

    Article  CAS  PubMed  Google Scholar 

  2. Jaaro-Peled H, Hayashi-Takagi A, Seshadri S, Kamiya A, Brandon NJ, Sawa A (2009) Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1 – ErbB4 and DISC1. Trends Neurosci 32:485–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bertolino A, Blasi G (2009) The genetics of schizophrenia. Neuroscience 164:288–299

    Article  CAS  PubMed  Google Scholar 

  4. Schwab SG, Wildenauer DB (2009) Update on key previously proposed candidate genes for schizophrenia. Curr Opin Psychiatry 22:147–153

    Article  PubMed  Google Scholar 

  5. Mei L, Xiong WC (2008) Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9:437–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Harrison PJ (2007) Schizophrenia susceptibility genes and neurodevelopment. Biol Psychiatry 61:1119–1120

    Article  PubMed  Google Scholar 

  7. O’Tuathaigh CMP, Babovic D, O’Meara G, Clifford JJ, Croke DT, Waddington JL (2007) Susceptibility genes for schizophrenia: characterization of mutant mouse models at the level of phenotypic behaviour. Neurosci Biobehav Rev 31:60–78

    Article  PubMed  Google Scholar 

  8. Chen J, Lipska BK, Weinberger DR (2006) Genetic mouse models of schizophrenia: from hypothesis-based to susceptibility gene-based models. Biol Psychiatry 59:1180–1188

    Article  CAS  PubMed  Google Scholar 

  9. Ross CA, Margolis RL, Reading SAJ, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52:139–153

    Article  CAS  PubMed  Google Scholar 

  10. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877–892

    Article  PubMed Central  PubMed  Google Scholar 

  11. Li D, Collier DA, He L (2006) Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia. Hum Mol Genet 15:1995–2002

    Article  CAS  PubMed  Google Scholar 

  12. Munafò MR, Thiselton DL, Clark TG, Flint J (2006) Association of the NRG1 gene and schizophrenia: a meta-analysis. Mol Psychiatry 11:539–546

    Article  PubMed  Google Scholar 

  13. Munafò MR, Attwood AS, Flint J (2008) Neuregulin 1 genotype and schizophrenia. Schizophrenia Bull 34:9–12

    Article  Google Scholar 

  14. Schlaepfer TE, Harris GJ, Tien AY, Peng LW, Lee S, Federman EB, Chase GA, Barta PE, Pearlson GD (1994) Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 151:842–848

    CAS  PubMed  Google Scholar 

  15. Selemon LD, Kleinman JE, Herman MM, Goldman-Rakic PS (2002) Smaller frontal gray matter volume in post-mortem schizophrenic brains. Am J Psychiatry 159:1983–1991

    Article  PubMed  Google Scholar 

  16. McDonald C, Grech A, Toulopoulou T, Schulze K, Chapple B, Sham P, Walshe M, Sharma T, Sigmundsson T, Chintis X, Murray RM (2002) Brain volumes in familial and non-familial schizophrenic probands and their unaffected relatives. Am J Med Genet (Neuropsychiatric Genetics) 114:616–625

    Article  Google Scholar 

  17. Shenton ME, Kikinis R, Jolesz FA, Pollak SD, Lemay M, Wible CG, Hokama H, Martin J, Metcalf D, Coleman M, McCarley RW (1992) Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. N Engl J Med 327:604–612

    Article  CAS  PubMed  Google Scholar 

  18. McCarley RW, Wilbe CG, Frumin M, Hirayasu Y, Levitt JJ, Fischer IA, Shenton ME (1999) MRI anatomy of schizophrenia. Biol Psychiatry 45:1099–1119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Selemon LD, Rajkowska G, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52:805–820

    Article  CAS  PubMed  Google Scholar 

  20. Selemon LD, Rajkowska G, Goldman-Rakic PS (1998) Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: application of a 3-dimensional, stereologic counting method. J Comp Neurol 392:402–412

    Article  CAS  PubMed  Google Scholar 

  21. Selemon LD, Goldman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45:17–25

    Article  CAS  PubMed  Google Scholar 

  22. Kauer JA, Gibson HE (2009) Hot flash: TRPV channels in the brain. Trends Neurosci 32:215–224

    Article  CAS  PubMed  Google Scholar 

  23. Chahl LA (2010) TRP Channels in the brain: psychiatric disorders. In: Szallasi A (ed) TRP Channels in Health and Disease: Implications for Diagnosis and Tharapy. Nova Science Publishers Inc., New York, pp 393–413

    Google Scholar 

  24. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  25. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  CAS  PubMed  Google Scholar 

  26. Tominaga M, Tominaga T (2005) Structure and function of TRPV1. Pflugers Archiv Eur J Physiol 451:143–150

    Article  CAS  Google Scholar 

  27. Szallasi A, Cortright DN, Blum CA, Eid SR (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6:357–372

    Article  CAS  PubMed  Google Scholar 

  28. Hermesh H, Shiloh R, Epstein Y, Manaim H, Weizman A, Munitz H (2000) Heat intolerance in patients with chronic schizophrenia maintained with antipsychotic drugs. Am J Psychiatry 157:1327–1329

    Article  CAS  PubMed  Google Scholar 

  29. Chong TWH, Castle DJ (2004) Layer upon layer: thermoregulation in schizophrenia. Schizophrenia Res 69:149–157

    Article  Google Scholar 

  30. Shiloh R, Weizman A, Epstein Y, Rosenberg SL, Valevski A, Dorfman-Etrog P, Wiezer N, Katz N, Munitz H, Hermesh H (2001) Abnormal thermoregulation in drug-free male schizophrenia patients. Eur Neuropsychopharmacol 11:285–288

    Article  CAS  PubMed  Google Scholar 

  31. Kudoh A, Ishihara H, Matsuki A (2000) Current perception thresholds and postoperative pain in schizophrenic patients. Regional Anaesth Pain Med 25:475–479

    CAS  Google Scholar 

  32. Blumensohn R, Ringler D, Eli I (2002) Pain perception in patients with schizophrenia. J Nerv Mental Dis 190:481–483

    Article  Google Scholar 

  33. Hooley JM, Delgado ML (2001) Pain insensitivity in the relatives of schizophrenia patients. Schizophrenia Res 47:265–273

    Article  CAS  Google Scholar 

  34. Bonnot O, Anderson GM, Cohen D, Willer JC, Tordjman S (2009) Are patients with schizophrenia insensitive to pain? A reconsideration of the question. Clin J Pain 25:244–252

    Article  PubMed  Google Scholar 

  35. Potvin S, Marchand S (2008) Hypoalgesia in schizophrenia is independent of antipsychotic drugs: a systematic quantitative review of experimental studies. Pain 138:70–78

    Article  CAS  PubMed  Google Scholar 

  36. Waldo MC (1999) Co-distribution of sensory gating and impaired niacin flush response in the parents of schizophrenics. Schizophrenia Res 40:49–53

    Article  CAS  Google Scholar 

  37. Messamore E, Hoffman WE, Janowsky A (2003) The niacin skin flush abnormality in schizophrenia: a quantitative dose-response study. Schizophrenia Res 62:251–258

    Article  Google Scholar 

  38. Szolcsanyi J (2004) Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 38:377–384

    Article  CAS  PubMed  Google Scholar 

  39. Gavva NR (2008) Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol Sci 29:550–557

    Article  CAS  PubMed  Google Scholar 

  40. Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–211

    CAS  PubMed  Google Scholar 

  41. Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43:143–201

    CAS  PubMed  Google Scholar 

  42. Sadaka Y, Weinfeld E, Lev DL, White EL (2003) Changes in mouse barrel synapses ­consequent to sensory deprivation from birth. J Comp Neurol 457:75–86

    Article  PubMed  Google Scholar 

  43. Degenhardt L, Hall W (2006) Is cannabis use a contributory cause of psychosis? Canad J Psychiatry 51:556–565

    Google Scholar 

  44. Laviolette SR, Grace AA (2006) The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction. Cell Mol Life Sci 63:1597–1613

    Article  CAS  PubMed  Google Scholar 

  45. Sundram S (2006) Cannabis and neurodevelopment: implications for psychiatric disorders. Hum Psychopharmacol 21:245–254

    Article  CAS  PubMed  Google Scholar 

  46. Malone DT, Hill MN, Rubino T (2010) Adolescent cannabis use and psychosis: epidemiology and neurodevelopmental models. Br J Pharmacol 160:511–522

    Article  CAS  PubMed  Google Scholar 

  47. Tseng KY, Chambers LA, Lipska BK (2009) Neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 204:295–305

    Article  PubMed Central  PubMed  Google Scholar 

  48. Ayhan Y, Sawa A, Ross CA, Pletnikov MV (2009) Animal models of gene-environment interactions in schizophrenia. Behav Brain Res 204:274–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Barak S, Weiner I (2011) Putative cognitive enhancers in preclinical models related to schizophrenia: the search for an elusive target. Pharmacol Biochem Behav 99:164–189

    Article  CAS  PubMed  Google Scholar 

  50. Jancsó G, Király E, Jancsó-Gábor A (1977) Pharmacologically induced selective degeneration of chemosensitive primary sensory neurons. Nature (London) 270:741–743

    Article  Google Scholar 

  51. Newson P, Lynch-Frame A, Roach R, Bennett S, Carr V, Chahl LA (2005) Intrinsic sensory deprivation induced by neonatal capsaicin treatment induces changes in rat brain and behaviour of possible relevance to schizophrenia. Br J Pharmacol 146:408–418

    Article  CAS  PubMed  Google Scholar 

  52. Zavitsanou K, Dalton VS, Wang H, Newson P, Chahl LA (2010) Receptor changes in brain tissue of rats treated as neonates with capsaicin. J Chem Neuroanat 39:248–255

    Article  CAS  PubMed  Google Scholar 

  53. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego, CA

    Google Scholar 

  54. Tolivia J, Tolivia D (1985) A new technique for differential and simultaneous staining of nerve cells and fibers. J Neurosci Methods 13:305–311

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loris A. Chahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chahl, L.A. (2012). Investigation of the Possible Role of TRP Channels in Schizophrenia. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-095-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-095-3_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-094-6

  • Online ISBN: 978-1-62703-095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics