Skip to main content

Analysis of the Drosophila Compound Eye with Light and Electron Microscopy

  • Protocol
  • First Online:
Book cover Retinal Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 935))

Abstract

The Drosophila compound eye is a regular structure, in which about 750 units, called ommatidia, are arranged in a highly regular pattern. Eye development proceeds in a stereotypical fashion, where epithelial cells of the eye imaginal discs are specified, recruited, and differentiated in a sequential order that leads to the highly precise structure of an adult eye. Even small perturbations, for example in signaling pathways that control proliferation, cell death, or differentiation, can impair the regular structure of the eye, which can be easily detected and analyzed. In addition, the Drosophila eye has proven to be an ideal model for studying the genetic control of neurodegeneration, since the eye is not essential for viability. Several human neurodegeneration diseases have been modeled in the fly, leading to a better understanding of the function/misfunction of the respective gene. In many cases, the genes involved and their function are conserved between flies and human. More strikingly, when ectopically expressed in the fly eye some human genes without a Drosophila counterpart can induce neurodegeneration, detectable by aberrant phototaxis, impaired electrophysiology, or defects in eye morphology. These defects are often rather subtle alteration in shape, size, or arrangement of the cells, and can be easily scored at the ultrastructural level. This chapter aims to provide an overview regarding the analysis of the retina by various means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolff T, Ready DF (1991) Cell death in normal and rough eye mutants of Drosophila. Development 113:825–839

    PubMed  CAS  Google Scholar 

  2. Baumann O, Lutz K (2006) Photoreceptor morphogenesis in the Drosophila compound eye: R1–R6 rhabdomeres become twisted just before eclosion. J Comp Neurol 498:68–79

    Article  PubMed  Google Scholar 

  3. Zuker CS, Cowman AF, Rubin GM (1985) Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40:851–858

    Article  PubMed  CAS  Google Scholar 

  4. O’Tousa JE, Baehr W, Martin RL, Hirsh J, Pak WL, Applebury ML (1985) The Drosophila ninaE gene encodes an opsin. Cell 40:839–850

    Article  PubMed  Google Scholar 

  5. Montell C, Jones K, Zuker C, Rubin G (1987) A second opsin gene expressed in the ultraviolet-sensitive R7 photoreceptor cells of Drosophila melanogaster. J Neurosci 7:1558–1566

    PubMed  CAS  Google Scholar 

  6. Zuker CS, Montell C, Jones K, Laverty T, Rubin GM (1987) A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules. J Neurosci 7:1550–1557

    PubMed  CAS  Google Scholar 

  7. Feiler R, Bjornson R, Kirschfeld K, Mismer D, Rubin GM, Smith DP, Socolich M, Zuker CS (1992) Ectopic expression of ultraviolet-rhodopsins in the blue photoreceptor cells of Drosophila: visual physiology and photochemistry of transgenic animals. J Neurosci 12:3862–3868

    PubMed  CAS  Google Scholar 

  8. Salcedo E, Huber A, Henrich S, Chadwell LV, Chou WH, Paulsen R, Britt SG (1999) Blue- and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. J Neurosci 19:10716–10726

    PubMed  CAS  Google Scholar 

  9. Harris WA, Stark WS, Walker JA (1976) Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol 256:415–439

    PubMed  CAS  Google Scholar 

  10. Reinke R, Krantz DE, Yen D, Zipursky SL (1988) Chaoptin, a cell surface glycoprotein required for Drosophila photoreceptor cell morphogenesis, contains a repeat motif found in yeast and human. Cell 52:291–301

    Article  PubMed  CAS  Google Scholar 

  11. Tomlinson A, Bowtell DD, Hafen E, Rubin GM (1987) Localization of the sevenless protein, a putative receptor for positional information, in the eye imaginal disc of Drosophila. Cell 51:143–150

    Article  PubMed  CAS  Google Scholar 

  12. Campos-Ortega JA, Jürgens G, Hofbauer A (1979) Cell clones and pattern formation: studies on sevenless, a mutant of Drosophila melanogaster. Wilhelm Roux’s Arch Dev Biol 186:27–50

    Article  Google Scholar 

  13. Tomlinson A, Kimmel BE, Rubin GM (1988) Rough, a Drosophila homeobox gene required in photoreceptors R2 and R5 for inductive interactions in the developing eye. Cell 55:771–784

    Article  PubMed  CAS  Google Scholar 

  14. Baker NE, Rubin GM (1989) Effect on eye development of dominant mutations in Drosophila homologue of the EGF receptor. Nature 340:150–153

    Article  PubMed  CAS  Google Scholar 

  15. Miyamoto H, Nihonmatsu I, Kondo S, Ueda R, Togashi S, Hirata K, Ikegami Y, Yamamoto D (1995) Canoe encodes a novel protein containing a GLGF/DHR motif and functions with Notch and scabrous in common developmental pathways in Drosophila. Genes Dev 9:612–625

    Article  PubMed  CAS  Google Scholar 

  16. Basler K, Christen B, Hafen E (1991) Ligand-independent activation of the sevenless receptor tyrosine kinase changes the fate of cells in the developing Drosophila eye. Cell 64:1069–1081

    Article  PubMed  CAS  Google Scholar 

  17. Grzeschik N, Knust E (2005) IrreC/rst-mediated cell sorting during Drosophila pupal eye development depends on proper localisation of DE-cadherin. Development 132:2035–2045

    Article  PubMed  CAS  Google Scholar 

  18. Yang Y, Ballinger D (1994) Mutations in calphotin, the gene encoding a Drosophila photoreceptor cell-specific calcium-binding protein, reveal roles in cellular morphogenesis and survival. Genetics 138:413–421

    PubMed  CAS  Google Scholar 

  19. Mishra M, Oke A, Lebel C, McDonald EC, Plummer Z, Cook TA, Zelhof AC (2010) Pph13 and orthodenticle define a dual regulatory pathway for photoreceptor cell morphogenesis and function. Development 137:2895–2904

    Article  PubMed  CAS  Google Scholar 

  20. Zelhof AC, Koundakjian E, Scully AL, Hardy RW, Pounds L (2003) Mutation of the photoreceptor specific homeodomain gene Pph13 results in defects in phototransduction and rhabdomere morphogenesis. Development 130:4383–4392

    Article  PubMed  CAS  Google Scholar 

  21. Li BX, Satoh AK, Ready DF (2007) Myosin V, Rab11 and dRip11 direct apical secretion and cellular morphogenesis in Drosophila photoreceptor cells. J Cell Biol 177:659–669

    Article  PubMed  CAS  Google Scholar 

  22. Muschalik N, Knust E (2011) Increased levels of the cytoplasmic domain of Crumbs repolarise developing Drosophila photoreceptors. J Cell Sci 124:3715–3725

    Article  PubMed  CAS  Google Scholar 

  23. Richard M, Grawe F, Knust E (2006) DPATJ plays a role in retinal morphogenesis and protects against light-dependent degeneration of photoreceptor cells in the Drosophila eye. Dev Dyn 235:895–907

    Article  PubMed  CAS  Google Scholar 

  24. Johnson K, Grawe F, Grzeschik N, Knust E (2002) Drosophila Crumbs is required to inhibit light-induced photoreceptor degeneration. Curr Biol 12:1675–1680

    Article  PubMed  CAS  Google Scholar 

  25. Hong Y, Ackerman L, Jan LY, Jan Y-N (2003) Distinct roles of Bazooka and Stardust in the specification of Drosophila photoreceptor membrane architecture. Proc Natl Acad Sci U S A 100:12712–12717

    Article  PubMed  CAS  Google Scholar 

  26. Berger S, Bulgakova NA, Grawe F, Johnson K, Knust E (2007) Unravelling the genetic complexity of Drosophila stardust during photoreceptor morphogenesis and prevention of light-induced degeneration. Genetics 176:2189–2200

    Article  PubMed  CAS  Google Scholar 

  27. Pellikka M, Tanentzapf G, Pinto M, Smith C, McGlade CJ, Ready DF, Tepass U (2002) Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 416:143–149

    Article  PubMed  CAS  Google Scholar 

  28. Pham H, Yu H, Laski FA (2008) Cofilin/ADF is required for retinal elongation and morphogenesis of the Drosophila rhabdomere. Dev Biol 318:82–91

    Article  PubMed  CAS  Google Scholar 

  29. Matsuo T, Takahashi K, Suzuki E, Yamamoto D (1999) The Canoe protein is necessary in adherens junctions for development of ommatidial architecture in the Drosophila compound eye. Cell Tissue Res 298:397–404

    Article  PubMed  CAS  Google Scholar 

  30. Husain N, Pellikka M, Hong H, Klimentova T, Choe K-M, Clandinin TR, Tepass U (2006) The Agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the Drosophila retina. Dev Cell 11:483–493

    Article  PubMed  CAS  Google Scholar 

  31. Zelhof AC, Hardy RW, Becker A, Zuker CS (2006) Transforming the architecture of compound eyes. Nature 443:696–699

    Article  PubMed  CAS  Google Scholar 

  32. Cheli VT, Daniels RW, Godoy R, Hoyle DJ, Kandachar V, Starcevic M, Martinez-Agosto JA, Poole S, DiAntonio A, Lloyd VK, Chang HC, Krantz DE, Dell’Angelica EC (2010) Genetic modifiers of abnormal organelle biogenesis in a Drosophila model of BLOC-1 deficiency. Hum Mol Genet 19:861–878

    Article  PubMed  CAS  Google Scholar 

  33. Pulipparacharuvil S, Akbar MA, Ray S, Sevrioukov EA, Haberman AS, Rohrer J, Kramer H (2005) Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. J Cell Sci 118:3663–3673

    Article  PubMed  CAS  Google Scholar 

  34. Wu CF, Wong F (1977) Frequency characteristics in the visual system of Drosophila: genetic dissection of electroretinogram components. J Gen Physiol 69:705–724

    Article  PubMed  CAS  Google Scholar 

  35. Hardie RC, Postma M (2008) Phototransduction in microvillar photoreceptors of Drosophila and other invertebrates. In: Basbaum AI, Kaneko A, Shephard GM, Westheimer G (eds) The senses: a comprehensive reference. Academic, San Diego, pp 77–130

    Chapter  Google Scholar 

  36. Pak WL (2010) Why Drosophila to study phototransduction? J Neurogenet 24:55–66

    Article  PubMed  CAS  Google Scholar 

  37. Pak WL, Grossfield J, Whiten V (1969) Non- phototactic mutants in a study of vision of Drosophila. Nature 222:351–354

    Article  PubMed  CAS  Google Scholar 

  38. Hotta Y, Benzer S (1969) Abnormal electroretinograms in visual mutants of Drosophila. Nature 222:354–356

    Article  PubMed  CAS  Google Scholar 

  39. Heisenberg M (1971) Isolation of mutants lacking the optomotor response. Drosoph lnf Serv 112:65–93

    Google Scholar 

  40. Heisenberg M (1997) Genetic approach to neuroethology. Bioessays 19:1065–1073

    Article  PubMed  CAS  Google Scholar 

  41. Franceschini N (1972) Pupil and pseudopupil in the compound eye of Drosophila. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin, pp 75–82

    Chapter  Google Scholar 

  42. Steele F, O’Tousa JE (1990) Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant. Neuron 4:883–890

    Article  PubMed  CAS  Google Scholar 

  43. Pichaud F, Desplan C (2001) A new visualization approach for identifying mutations taht affect differentiation and organization of the Drosophila ommatidia. Development 128:815–826

    PubMed  CAS  Google Scholar 

  44. Meyer NE, Joel-Almagor T, Frechter S, Minke B, Huber A (2006) Subcellular translocation of the eGFP-tagged TRPL channel in Drosophila photoreceptors requires activation of the phototransduction cascade. J Cell Sci 119:2592–2603

    Article  PubMed  CAS  Google Scholar 

  45. Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–436

    Article  PubMed  CAS  Google Scholar 

  46. Whitworth AJ (2011) Drosophila models of Parkinson’s disease. Adv Genet 73:1–50

    Article  PubMed  CAS  Google Scholar 

  47. Ambegaokar SS, Roy B, Jackson GR (2010) Neurodegenerative models in Drosophila: polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis. Neurobiol Dis 40:29–39

    Article  PubMed  CAS  Google Scholar 

  48. St. Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 31:176–188

    Article  Google Scholar 

  49. Wang T, Montell C (2007) Phototransduction and retinal degeneration in Drosophila. Pflugers Arch 454:821–847

    Article  PubMed  CAS  Google Scholar 

  50. Rogge RD, Karlovich CA, Banerjee U (1991) Genetic dissection of a neurodevelopmental pathway: son of sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell 64:39–48

    Article  PubMed  CAS  Google Scholar 

  51. Bonfini L, Karlovich CA, Dasgupta C, Banerjee U (1992) The son of sevenless gene product: a putative activator of Ras. Science 255:603–606

    Article  PubMed  CAS  Google Scholar 

  52. Shulman JM, Feany MB (2003) Genetic modifiers of tauopathy in Drosophila. Genetics 165:1233–1242

    PubMed  CAS  Google Scholar 

  53. Garen SH, Kankel DR (1983) Golgi and genetic mosaic analyses of visual system mutants in Drosophila melanogaster. Dev Biol 96:445–466

    Article  PubMed  CAS  Google Scholar 

  54. Becker HJ (1957) Über Röntgenmosaikflecken und Defektmutationen am Auge von Drosophila und die Entwicklungsphysiologie des Auges. Z Indukt Abstamm Vererbungsl 88:333–373

    PubMed  CAS  Google Scholar 

  55. Stern C (1936) Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21:625–730

    PubMed  CAS  Google Scholar 

  56. Thaker HM, Kankel DR (1992) Mosaic analysis gives an estimate of the extent of genomic involvement in the development of the visual system in Drosophila melanogaster. Genetics 131:883–894

    PubMed  CAS  Google Scholar 

  57. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509

    Article  PubMed  CAS  Google Scholar 

  58. Stowers RS, Schwarz TL (1999) A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152:1631–1639

    PubMed  CAS  Google Scholar 

  59. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237

    PubMed  CAS  Google Scholar 

  60. Newsome TP, Asling B, Dickson BJ (2000) Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127:851–860

    PubMed  CAS  Google Scholar 

  61. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  62. Elliott DA, Brand AH (2008) The GAL4 system: a versatile system for the expression of genes. Methods Mol Biol 420:79–95

    Article  PubMed  CAS  Google Scholar 

  63. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768

    Article  PubMed  CAS  Google Scholar 

  64. McGuire SE, Deshazer M, Davis RL (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20:384–391

    Article  PubMed  CAS  Google Scholar 

  65. Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She WC, Luchak JM, Martinez P, Turiegano E, Benito J, Capovilla M, Skinner PJ, McCall A, Canal I, Orr H, Zoghbi HY, Botas J (2000) Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408:101–106

    Article  PubMed  CAS  Google Scholar 

  66. Cook T, Zelhof A, Mishra M, Nie J (2011) 800 facets of retinal degeneration. Prog Mol Biol Transl Sci 100:331–368

    Article  PubMed  CAS  Google Scholar 

  67. Lu B (2009) Recent advances in using Drosophila to model neurodegenerative diseases. Apoptosis 14:1008–1020

    Article  PubMed  CAS  Google Scholar 

  68. Bonini NM, Fortini ME (2002) Applications of the Drosophila retina to human disease modeling. In: Moses K (ed) Drosophila eye development. Springer, Heidelberg, pp 257–271

    Chapter  Google Scholar 

  69. Tepass U, Knust E (1993) Crumbs and stardust act in a genetic pathway that controls the organization of epithelia in Drosophila melanogaster. Dev Biol 159:311–326

    Article  PubMed  CAS  Google Scholar 

  70. Izaddoost S, Nam S-C, Bhat MA, Bellen HJ, Choi K-W (2002) Drosophila crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature 416:178–183

    Article  PubMed  CAS  Google Scholar 

  71. Bhat MA, Izaddoost S, Lu Y, Cho KO, Choi KW, Bellen HJ (1999) Discs lost, a novel multi-PDZ domain protein, establishes and maintains epithelial polarity. Cell 96:833–845

    Article  PubMed  CAS  Google Scholar 

  72. Bachmann A, Schneider M, Grawe F, Theilenberg E, Knust E (2001) Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 414:638–643

    Article  PubMed  CAS  Google Scholar 

  73. Hong Y, Stronach B, Perrimon N, Jan LY, Jan YN (2001) Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature 414:634–638

    Article  PubMed  CAS  Google Scholar 

  74. Bulgakova NA, Rentsch M, Knust E (2010) Antagonistic functions of Two stardust isoforms in Drosophila photoreceptor cells. Mol Biol Cell 21:3915–3925

    Article  PubMed  CAS  Google Scholar 

  75. Bulgakova NA, Kempkens Ö, Knust E (2008) Multiple domains of Drosophila Stardust differentially mediate localisation of the Crumbs/Stardust complex during photoreceptor development. J Cell Sci 121:2018–2026

    Article  PubMed  CAS  Google Scholar 

  76. Oda H, Uemura T, Harada Y, Iwai Y, Takeichi M (1994) A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell–cell adhesion. Dev Biol 165:716–726

    Article  PubMed  CAS  Google Scholar 

  77. Riggleman B, Schedl P, Wieschaus E (1990) Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by wingless. Cell 63:549–560

    Article  PubMed  CAS  Google Scholar 

  78. Karagiosis SA, Ready DF (2004) Moesin contributes an essential structural role in Drosophila photoreceptor morphogenesis. Development 131:725–732

    Article  PubMed  CAS  Google Scholar 

  79. Satoh AK, Li BX, Xia H (2008) Calcium-activated myosin V closes the drosophila pupil. Curr Biol 18:951–955

    Article  PubMed  CAS  Google Scholar 

  80. Lebovitz RM, Takeyasu K, Fambrough DM (1989) Molecular characterization and expression of the (Na+ + K+)-ATPase alpha-subunit in Drosophila melanogaster. EMBO J 8:193–201

    PubMed  CAS  Google Scholar 

  81. Yasuhara JC, Baumann O, Takeyasu K (2000) Localization of Na/K-ATPase in developing and adult Drosophila melanogaster photoreceptors. Cell Tissue Res 300:239–249

    Article  PubMed  CAS  Google Scholar 

  82. Blochlinger K, Bodmer R, Jan LY, Jan YN (1990) Patterns of expression of cut, a protein required for external sensory organ development in wild-type and cut mutant Drosophila embryos. Genes Dev 4:1322–1331

    Article  PubMed  CAS  Google Scholar 

  83. Zipursky SL, Venkatesh TR, Teplow DB, Benzer S (1984) Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes. Cell 36:15–26

    Article  PubMed  CAS  Google Scholar 

  84. Pielage J, Stork T, Bunse I, Klämbt C (2003) The cell survival gene discs lost encodes a cytoplasmic Codanin-1 like protein, not a homolog of the tight junction PDZ-protein Patj. Dev Cell 5:841–851

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michaela Rentsch for help with the electron micrographs, Franziska Friedrich for help in preparing Figs. 3, 4, and 5, and Nagananda Gurudev for the figure of the optical neutralization. Work of E. K. is supported by the Max-Planck Society (MPG) and a grant from the EC (HEALTH-F2-2008-200234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Knust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mishra, M., Knust, E. (2012). Analysis of the Drosophila Compound Eye with Light and Electron Microscopy. In: Weber, B., LANGMANN, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 935. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-080-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-080-9_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-079-3

  • Online ISBN: 978-1-62703-080-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics