Skip to main content

The Non-Obese Diabetic (NOD) Mouse as a Model of Human Type 1 Diabetes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 933))

Abstract

The non-obese diabetic (NOD) mouse spontaneously develops type 1 diabetes (T1D) and has thus served as a model for understanding the genetic and immunological basis, and treatment, of T1D. Since its initial description in 1980, however, the field has matured and recognized that prevention of diabetes in NOD mice (i.e., preventing the disease from occurring by an intervention prior to frank diabetes) is relatively easy to achieve and does not correlate well with curing the disease (after the onset of frank hyperglycemia). Hundreds of papers have described the prevention of diabetes in NOD mice but only a handful have described its actual reversal. The paradoxical conclusion is that preventing the disease in NOD mice does not necessarily tell us what caused the disease nor how to reverse it. The NOD mouse model is therefore best used now, with respect to human disease, as a way to understand the genetic and immunologic causes of and as a model for trying to reverse disease once hyperglycemia occurs. We describe how genetic approaches to identifying causative gene variants can be adapted to identify novel therapeutic agents for reversing new-onset T1D.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Driver JP, Serreze DV, Chen YG (2011) Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 33:67–87

    Article  PubMed  CAS  Google Scholar 

  2. Thayer TC, Wilson SB, Mathews CE (2010) Use of nonobese diabetic mice to understand human type 1 diabetes. Endocrinol Metab Clin North Am 39:541–561

    Article  PubMed  CAS  Google Scholar 

  3. Wicker LS, Clark J, Fraser HI, Garner VE, Gonzalez-Munoz A, Healy B, Howlett S, Hunter K, Rainbow D, Rosa RL, Smink LJ, Todd JA, Peterson LB (2005) Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun 25(Suppl):29–33

    Article  PubMed  CAS  Google Scholar 

  4. Ridgway WM, Peterson LB, Todd JA, Rainbow DB, Healy B, Burren OS, Wicker LS (2008) Gene-gene interactions in the NOD mouse model of type 1 diabetes. Adv Immunol 100:151–175

    Article  PubMed  Google Scholar 

  5. Culina S, Boitard C, Mallone R (2011) Antigen-based immune therapeutics for type 1 diabetes: magic bullets or ordinary blanks? Clin Dev Immunol 2011:286248

    Article  PubMed  Google Scholar 

  6. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–1300

    Article  PubMed  CAS  Google Scholar 

  7. Oikawa Y, Shimada A, Yamada Y, Okubo Y, Katsuki T, Shigihara T, Miyazaki J, Narumi S, Itoh H (2010) CXC chemokine ligand 10 DNA vaccination plus Complete Freund’s Adjuvant reverses hyperglycemia in non-obese diabetic mice. Rev Diabet Stud 7:209–224

    PubMed  Google Scholar 

  8. Tarbell KV, Petit L, Zuo X, Toy P, Luo X, Mqadmi A, Yang H, Suthanthiran M, Mojsov S, Steinman RM (2007) Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L  +  regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204:191–201

    Article  PubMed  CAS  Google Scholar 

  9. Fiorina P, Vergani A, Dada S, Jurewicz M, Wong M, Law K, Wu E, Tian Z, Abdi R, Guleria I, Rodig S, Dunussi-Joannopoulos K, Bluestone J, Sayegh MH (2008) Targeting CD22 reprograms B-cells and reverses autoimmune diabetes. Diabetes 57:3013–3024

    Article  PubMed  CAS  Google Scholar 

  10. Parker MJ, Xue S, Alexander JJ, Wasserfall CH, Campbell-Thompson ML, Battaglia M, Gregori S, Mathews CE, Song S, Troutt M, Eisenbeis S, Williams J, Schatz DA, Haller MJ, Atkinson MA (2009) Immune depletion with cellular mobilization imparts immunoregulation and reverses autoimmune diabetes in nonobese diabetic mice. Diabetes 58:2277–2284

    Article  PubMed  CAS  Google Scholar 

  11. Hu CY, Rodriguez-Pinto D, Du W, Ahuja A, Henegariu O, Wong FS, Shlomchik MJ, Wen L (2007) Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin Invest 117:3857–3867

    Article  PubMed  CAS  Google Scholar 

  12. Nikolic B, Takeuchi Y, Leykin I, Fudaba Y, Smith RN, Sykes M (2004) Mixed hematopoietic chimerism allows cure of autoimmune diabetes through allogeneic tolerance and reversal of autoimmunity. Diabetes 53:376–383

    Article  PubMed  CAS  Google Scholar 

  13. Jurewicz M, Yang S, Augello A, Godwin JG, Moore RF, Azzi J, Fiorina P, Atkinson M, Sayegh MH, Abdi R (2010) Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes 59:3139–3147

    Article  PubMed  CAS  Google Scholar 

  14. Tian L, Gao J, Hao J, Zhang Y, Yi H, O’Brien TD, Sorenson R, Luo J, Guo Z (2010) Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 151:3049–3060

    Article  PubMed  CAS  Google Scholar 

  15. Suarez-Pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A (2008) Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 57:3281–3288

    Article  PubMed  CAS  Google Scholar 

  16. Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S, Cagnard N, Carpentier W, Tang Q, Bluestone J, Chatenoud L, Klatzmann D, Salomon BL, Piaggio E (2010) IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 207:1871–1878

    Article  PubMed  CAS  Google Scholar 

  17. Koulmanda M, Bhasin M, Hoffman L, Fan Z, Qipo A, Shi H, Bonner-Weir S, Putheti P, Degauque N, Libermann TA, Auchincloss H Jr, Flier JS, Strom TB (2008) Curative and beta cell regenerative effects of alpha1-antitrypsin treatment in autoimmune diabetic NOD mice. Proc Natl Acad Sci U S A 105:16242–16247

    Article  PubMed  CAS  Google Scholar 

  18. Bresson D, Fradkin M, Manenkova Y, Rottembourg D, von Herrath M (2010) Genetic-induced variations in the GAD65 T-cell repertoire governs efficacy of anti-CD3/GAD65 combination therapy in new-onset type 1 diabetes. Mol Ther 18:307–316

    Article  PubMed  CAS  Google Scholar 

  19. Godebu E, Summers-Torres D, Lin MM, Baaten BJ, Bradley LM (2008) Polyclonal adaptive regulatory CD4 cells that can reverse type I diabetes become oligoclonal long-term protective memory cells. J Immunol 181:1798–1805

    PubMed  CAS  Google Scholar 

  20. Louvet C, Szot GL, Lang J, Lee MR, Martinier N, Bollag G, Zhu S, Weiss A, Bluestone JA (2008) Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci U S A 105:18895–18900

    Article  PubMed  CAS  Google Scholar 

  21. Hoglund P, Mintern J, Waltzinger C, Heath W, Benoist C, Mathis D (1999) Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J Exp Med 189:331–339

    Article  PubMed  CAS  Google Scholar 

  22. Rosmalen JG, Leenen PJ, Katz JD, Voerman JS, Drexhage HA (1997) Dendritic cells in the autoimmune insulitis in NOD mouse models of diabetes. Adv Exp Med Biol 417:291–294

    PubMed  CAS  Google Scholar 

  23. Saxena V, Ondr JK, Magnusen AF, Munn DH, Katz JD (2007) The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse. J Immunol 179:5041–5053

    PubMed  CAS  Google Scholar 

  24. Wong FS, Janeway CA Jr (1997) The role of CD4 and CD8 T cells in type I diabetes in the NOD mouse. Res Immunol 148:327–332

    Article  PubMed  CAS  Google Scholar 

  25. Ziegler AG, Nepom GT (2010) Prediction and pathogenesis in type 1 diabetes. Immunity 32:468–478

    Article  PubMed  CAS  Google Scholar 

  26. Mueller DL (2003) Tuning the immune ­system: competing positive and negative feedback loops. Nat Immunol 4:210–211

    Article  PubMed  CAS  Google Scholar 

  27. Shoda LK, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, Eisenbarth GS, Mathis D, Rossini AA, Campbell SE, Kahn R, Kreuwel HT (2005) A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23:115–126

    Article  PubMed  CAS  Google Scholar 

  28. Roep BO, Atkinson M, von Herrath M (2004) Satisfaction (not) guaranteed: re-evaluating the use of animal models of type 1 diabetes. Nat Rev Immunol 4:989–997

    Article  PubMed  CAS  Google Scholar 

  29. Atkinson MA, Leiter EH (1999) The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 5:601–604

    Article  PubMed  CAS  Google Scholar 

  30. Wicker LS, Todd JA, Peterson LB (1995) Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol 13:179–200

    Article  PubMed  CAS  Google Scholar 

  31. Wicker LS, Miller BJ, Coker LZ, McNally SE, Scott S, Mullen Y, Appel MC (1987) Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse. J Exp Med 165:1639–1654

    Article  PubMed  CAS  Google Scholar 

  32. Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JR, Hearne CM, Knight AM, Love JM, McAleer MA, Prins JB et al (1991) Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351:542–547

    Article  PubMed  CAS  Google Scholar 

  33. Burren OS, Adlem EC, Achuthan P, Christensen M, Coulson RM, Todd JA (2011) T1DBase: update 2011, organization and presentation of large-scale data sets for type 1 diabetes research. Nucleic Acids Res 39:D997–D1001

    Article  PubMed  Google Scholar 

  34. Ridgway WM, Healy B, Smink LJ, Rainbow D, Wicker LS (2007) New tools for defining the ‘genetic background’ of inbred mouse strains. Nat Immunol 8:669–673

    Article  PubMed  CAS  Google Scholar 

  35. Lyons PA, Hancock WW, Denny P, Lord CJ, Hill NJ, Armitage N, Siegmund T, Todd JA, Phillips MS, Hess JF, Chen SL, Fischer PA, Peterson LB, Wicker LS (2000) The NOD Idd9 genetic interval influences the pathogenicity of insulitis and contains molecular variants of Cd30, Tnfr2, and Cd137. Immunity 13:107–115

    Article  PubMed  CAS  Google Scholar 

  36. Cannons JL, Chamberlain G, Howson J, Smink LJ, Todd JA, Peterson LB, Wicker LS, Watts TH (2005) Genetic and functional association of the immune signaling molecule 4-1BB (CD137/TNFRSF9) with type 1 diabetes. J Autoimmun 25(1):13–20

    Article  PubMed  CAS  Google Scholar 

  37. Podolin PL, Wilusz MB, Cubbon RM, Pajvani U, Lord CJ, Todd JA, Peterson LB, Wicker LS, Lyons PA (2000) Differential glycosylation of interleukin 2, the molecular basis for the NOD Idd3 type 1 diabetes gene? Cytokine 12:477–482

    Article  PubMed  CAS  Google Scholar 

  38. Kamanaka M, Rainbow D, Schuster-Gossler K, Eynon EE, Chervonsky AV, Wicker LS, Flavell RA (2009) Amino acid polymorphisms altering the glycosylation of IL-2 do not protect from type 1 diabetes in the NOD mouse. Proc Natl Acad Sci U S A 106:11236–11240

    Article  PubMed  CAS  Google Scholar 

  39. Yamanouchi J, Rainbow D, Serra P, Howlett S, Hunter K, Garner VE, Gonzalez-Munoz A, Clark J, Veijola R, Cubbon R, Chen SL, Rosa R, Cumiskey AM, Serreze DV, Gregory S, Rogers J, Lyons PA, Healy B, Smink LJ, Todd JA, Peterson LB, Wicker LS, Santamaria P (2007) Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39:329–337

    Article  PubMed  CAS  Google Scholar 

  40. Rainbow DB, Esposito L, Howlett SK, Hunter KM, Todd JA, Peterson LB, Wicker LS (2008) Commonality in the genetic control of Type 1 diabetes in humans and NOD mice: variants of genes in the IL-2 pathway are associated with autoimmune diabetes in both species. Biochem Soc Trans 36:312–315

    Article  PubMed  CAS  Google Scholar 

  41. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto-Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511

    Article  PubMed  CAS  Google Scholar 

  42. Gerold KD, Zheng P, Rainbow DB, Zernecke A, Wicker LS, Kissler S (2011) The soluble CTLA-4 splice variant protects from type 1 diabetes and potentiates regulatory T-cell function. Diabetes 60:1955–1963

    Article  PubMed  CAS  Google Scholar 

  43. Wicker LS, Chamberlain G, Hunter K, Rainbow D, Howlett S, Tiffen P, Clark J, Gonzalez-Munoz A, Cumiskey AM, Rosa RL, Howson JM, Smink LJ, Kingsnorth A, Lyons PA, Gregory S, Rogers J, Todd JA, Peterson LB (2004) Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse. J Immunol 173:164–173

    PubMed  CAS  Google Scholar 

  44. Vijayakrishnan L, Slavik JM, Illes Z, Greenwald RJ, Rainbow D, Greve B, Peterson LB, Hafler DA, Freeman GJ, Sharpe AH, Wicker LS, Kuchroo VK (2004) An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 20:563–575

    Article  PubMed  CAS  Google Scholar 

  45. Irie J, Wu Y, Kachapati K, Mittler RS, Ridgway WM (2007) Modulating protective and pathogenic CD4+ subsets via CD137 in type 1 diabetes. Diabetes 56:186–196

    Article  PubMed  CAS  Google Scholar 

  46. Maier LM, Smyth DJ, Vella A, Payne F, Cooper JD, Pask R, Lowe C, Hulme J, Smink LJ, Fraser H, Moule C, Hunter KM, Chamberlain G, Walker N, Nutland S, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Strachan DP, Peterson LB, Todd JA, Wicker LS, Twells RC (2005) Construction and analysis of tag single nucleotide polymorphism maps for six human-mouse orthologous candidate genes in type 1 diabetes. BMC Genet 6:9

    Article  PubMed  Google Scholar 

  47. Fung EY, Smyth DJ, Howson JM, Cooper JD, Walker NM, Stevens H, Wicker LS, Todd JA (2009) Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. Genes Immun 10:188–191

    Article  PubMed  CAS  Google Scholar 

  48. Li L, Soetandyo N, Wang Q, Ye Y (2009) The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim Biophys Acta 1793:346–353

    Article  PubMed  CAS  Google Scholar 

  49. Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68

    Article  PubMed  CAS  Google Scholar 

  50. Pollok KE, Kim YJ, Zhou Z, Hurtado J, Kim KK, Pickard RT, Kwon BS (1993) Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol 150:771–781

    PubMed  CAS  Google Scholar 

  51. Vinay DS, Kwon BS (1998) Role of 4-1BB in immune responses. Semin Immunol 10:481–489

    Article  PubMed  CAS  Google Scholar 

  52. Croft M (2003) Costimulation of T cells by OX40, 4-1BB, and CD27. Cytokine Growth Factor Rev 14:265–273

    Article  PubMed  CAS  Google Scholar 

  53. Croft M (2003) Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 3:609–620

    Article  PubMed  CAS  Google Scholar 

  54. Foell J, McCausland M, Burch J, Corriazzi N, Yan XJ, Suwyn C, O’Neil SP, Hoffmann MK, Mittler RS (2003) CD137-mediated T cell co-stimulation terminates existing autoimmune disease in SLE-prone NZB/NZW F1 mice. Ann N Y Acad Sci 987:230–235

    Article  PubMed  CAS  Google Scholar 

  55. Fukushima A, Yamaguchi T, Ishida W, Fukata K, Mittler RS, Yagita H, Ueno H (2005) Engagement of 4-1BB inhibits the development of experimental allergic conjunctivitis in mice. J Immunol 175:4897–4903

    PubMed  CAS  Google Scholar 

  56. Sun Y, Lin X, Chen HM, Wu Q, Subudhi SK, Chen L, Fu YX (2002) Administration of ­agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J Immunol 168:1457–1465

    PubMed  CAS  Google Scholar 

  57. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445:931–935

    Article  PubMed  CAS  Google Scholar 

  58. Chen Z, Herman AE, Matos M, Mathis D, Benoist C (2005) Where CD4  +  CD25+ T reg cells impinge on autoimmune diabetes. J Exp Med 202:1387–1397

    Article  PubMed  CAS  Google Scholar 

  59. Bertram EM, Lau P, Watts TH (2002) Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol 168:3777–3785

    PubMed  CAS  Google Scholar 

  60. Lee HW, Park SJ, Choi BK, Kim HH, Nam KO, Kwon BS (2002) 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol 169:4882–4888

    PubMed  Google Scholar 

  61. Kim J, Choi SP, La S, Seo JS, Kim KK, Nam SH, Kwon B (2003) Constitutive expression of 4-1BB on T cells enhances CD4+ T cell responses. Exp Mol Med 35:509–517

    PubMed  CAS  Google Scholar 

  62. Setareh M, Schwarz H, Lotz M (1995) A mRNA variant encoding a soluble form of 4-1BB, a member of the murine NGF/TNF receptor family. Gene 164:311–315

    Article  PubMed  CAS  Google Scholar 

  63. Schwarz H, Blanco FJ, von Kempis J, Valbracht J, Lotz M (1996) ILA, a member of the human nerve growth factor/tumor necrosis factor receptor family, regulates T-lymphocyte proliferation and survival. Blood 87:2839–2845

    PubMed  CAS  Google Scholar 

  64. Shao Z, Sun F, Koh DR, Schwarz H (2008) Characterisation of soluble murine CD137 and its association with systemic lupus. Mol Immunol 45:3990–3999

    Article  PubMed  CAS  Google Scholar 

  65. Michel J, Schwarz H (2000) Expression of soluble CD137 correlates with activation-induced cell death of lymphocytes. Cytokine 12:742–746

    Article  PubMed  CAS  Google Scholar 

  66. Middendorp S, Xiao Y, Song JY, Peperzak V, Krijger PH, Jacobs H, Borst J (2009) Mice deficient for CD137 ligand are predisposed to develop germinal center-derived B-cell lymphoma. Blood 114:2280–2289

    Article  PubMed  CAS  Google Scholar 

  67. Lennon GP, Bettini M, Burton AR, Vincent E, Arnold PY, Santamaria P, Vignali DA (2009) T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event. Immunity 31:643–653

    Article  PubMed  CAS  Google Scholar 

  68. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22:589–594

    Article  PubMed  CAS  Google Scholar 

  69. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–8157

    PubMed  CAS  Google Scholar 

  70. Weber K, Bartsch U, Stocking C, Fehse B (2008) A multicolor panel of novel lentiviral “gene ontology” (LeGO) vectors for functional gene analysis. Mol Ther 16:698–706

    Article  PubMed  CAS  Google Scholar 

  71. Follenzi A, Santambrogio L, Annoni A (2007) Immune responses to lentiviral vectors. Curr Gene Ther 7:306–315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the American Diabetes Association, grant ADA 1-11-BS-131 and from the VA, Merit review I01BX007080 from the Biomedical Laboratory Research & Development Service of the VA Office of Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Ridgway .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kachapati, K., Adams, D., Bednar, K., Ridgway, W.M. (2012). The Non-Obese Diabetic (NOD) Mouse as a Model of Human Type 1 Diabetes. In: Joost, HG., Al-Hasani, H., Schürmann, A. (eds) Animal Models in Diabetes Research. Methods in Molecular Biology, vol 933. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-068-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-068-7_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-067-0

  • Online ISBN: 978-1-62703-068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics