Skip to main content
Book cover

Malaria pp 99–125Cite as

Transfection of Rodent Malaria Parasites

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 923))

Abstract

Gene manipulation is an invaluable tool to investigate and understand the biology of an organism. Although this technology has been applied to both the human and rodent malarial parasites (RMP), Plasmodium berghei in particular offers a more robust system due to a higher and more efficient transformation rate. Here, we describe a comprehensive transfection and selection protocol using P. berghei including a variant negative selection protocol administering 5-fluorocytosine to the animals in drinking water. Additionally, we discuss and assess the latest advances in gene manipulation technologies developed in RMP to gain a better understanding of Plasmodium biology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bártfai R et al (2010) H2A.Z demarcates intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathog 6:e1001223

    Article  PubMed  Google Scholar 

  2. Bozdech Z et al (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:e5

    Article  PubMed  Google Scholar 

  3. Florens L et al (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419:520–526

    Article  PubMed  CAS  Google Scholar 

  4. Gardner MJ et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  PubMed  CAS  Google Scholar 

  5. Khan SM et al (2005) Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121:675–687

    Article  PubMed  CAS  Google Scholar 

  6. Lasonder E et al (2002) Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419:537–542

    Article  PubMed  CAS  Google Scholar 

  7. Le Roch KG et al (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:1503–1508

    Article  PubMed  Google Scholar 

  8. Otto TD et al (2010) New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol 76:12–24

    Article  PubMed  CAS  Google Scholar 

  9. Salcedo-Amaya AM et al (2009) Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci USA 106:9655–9660

    Article  PubMed  CAS  Google Scholar 

  10. van Dijk MR et al (1995) Stable transfection of malaria parasite blood stages. Science 268:1358–1362

    Article  PubMed  Google Scholar 

  11. Mota MM et al (2001) Gene targeting in the rodent malaria parasite Plasmodium yoelii. Mol Biochem Parasitol 113:271–278

    Article  PubMed  CAS  Google Scholar 

  12. Reece SE, Thompson J (2008) Transformation of the rodent malaria parasite Plasmodium chabaudi and generation of a stable fluorescent line PcGFPCON. Malar J 7:183

    Article  PubMed  Google Scholar 

  13. Kooij TW et al (2005) A Plasmodium whole-genome synteny map: indels and synteny breakpoints as foci for species-specific genes. PLoS Pathog 1:e44

    Article  PubMed  Google Scholar 

  14. Franke-Fayard B et al (2004) A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol 137:23–33

    Article  PubMed  CAS  Google Scholar 

  15. Mair GR et al (2010) Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog 6:e1000767

    Article  PubMed  Google Scholar 

  16. Ponzi M et al (2009) Egress of Plasmodium berghei gametes from their host erythrocyte is mediated by the MDV-1/PEG3 protein. Cell Microbiol 11:1272–1288

    Article  PubMed  CAS  Google Scholar 

  17. Janse CJ et al (2006) High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc 1:346–356

    Article  PubMed  CAS  Google Scholar 

  18. Janse CJ et al (2006) High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol 145:60–70

    Article  PubMed  CAS  Google Scholar 

  19. van Dijk MR et al (1994) Mechanisms of pyrimethamine resistance in two different strains of Plasmodium berghei. Mol Biochem Parasitol 68:167–171

    Article  PubMed  Google Scholar 

  20. Fidock DA, Wellems TE (1997) Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Proc Natl Acad Sci USA 94:10931–10936

    Article  PubMed  CAS  Google Scholar 

  21. Braks JA et al (2006) Development and application of a positive-negative selectable marker system for use in reverse genetics in Plasmodium. Nucleic Acids Res 34:e39

    Article  PubMed  Google Scholar 

  22. Maier AG et al (2006) Negative selection using yeast cytosine deaminase/uracil phosphoribosyl transferase in Plasmodium falciparum for targeted gene deletion by double crossover recombination. Mol Biochem Parasitol 150:118–121

    Article  PubMed  CAS  Google Scholar 

  23. van Schaijk BC et al (2010) Removal of heterologous sequences from Plasmodium falciparum mutants using FLPe-recombinase. PLoS One 5:e15121

    Article  PubMed  Google Scholar 

  24. Laurentino EC et al (2011) Experimentally controlled downregulation of the histone chaperone FACT in Plasmodium berghei reveals that it is critical to male gamete fertility. Cell Microbiol 13:1956–1974

    Article  PubMed  CAS  Google Scholar 

  25. O’Donnell RA et al (2001) An alteration in concatameric structure is associated with efficient segregation of plasmids in transfected Plasmodium falciparum parasites. Nucleic Acids Res 29:716–724

    Article  PubMed  Google Scholar 

  26. van Dijk MR et al (1997) Replication, expression and segregation of plasmid-borne DNA in genetically transformed malaria parasites. Mol Biochem Parasitol 86:155–162

    Article  PubMed  Google Scholar 

  27. Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast. Nature 305:189–193

    Article  PubMed  CAS  Google Scholar 

  28. Stinchcomb DT et al (1979) Isolation and characterisation of a yeast chromosomal replicator. Nature 282:39–43

    Article  PubMed  CAS  Google Scholar 

  29. Iwanaga S et al (2010) Functional identification of the Plasmodium centromere and generation of a Plasmodium artificial chromosome. Cell Host Microbe 7:245–255

    Article  PubMed  CAS  Google Scholar 

  30. Chookajorn T et al (2007) Epigenetic memory at malaria virulence genes. Proc Natl Acad Sci USA 104:899–902

    Article  PubMed  CAS  Google Scholar 

  31. Freitas-Junior LH et al (2005) Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121:25–36

    Article  PubMed  CAS  Google Scholar 

  32. Hernandez-Rivas R et al (2010) Telomeric heterochromatin in Plasmodium falciparum. J Biomed Biotechnol. doi:10.1155/2010/290501

  33. Lopez-Rubio JJ et al (2007) 5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol Microbiol 66:1296–1305

    PubMed  CAS  Google Scholar 

  34. Petter M et al (2011) Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLoS Pathog 7:e1001292

    Article  PubMed  CAS  Google Scholar 

  35. Meissner M et al (2005) Tetracycline analogue-regulated transgene expression in Plasmodium falciparum blood stages using Toxoplasma gondii transactivators. Proc Natl Acad Sci USA 102:2980–2985

    Article  PubMed  CAS  Google Scholar 

  36. Armstrong CM, Goldberg DE (2007) An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat Methods 4:1007–1009

    Article  PubMed  CAS  Google Scholar 

  37. Muralidharan V et al (2011) Asparagine repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent affinity tag. Proc Natl Acad Sci USA 108:4411–4416

    Article  PubMed  CAS  Google Scholar 

  38. Carvalho TG et al (2004) Conditional mutagenesis using site-specific recombination in Plasmodium berghei. Proc Natl Acad Sci USA 101:14931–14936

    Article  PubMed  CAS  Google Scholar 

  39. Combe A et al (2009) Clonal conditional mutagenesis in malaria parasites. Cell Host Microbe 5:386–396

    Article  PubMed  CAS  Google Scholar 

  40. de Koning-Ward TF et al (2009) A newly discovered protein export machine in malaria parasites. Nature 459:945–949

    Article  PubMed  Google Scholar 

  41. Ivics Z et al (2009) Transposon-mediated genome manipulation in vertebrates. Nat Methods 6:415–422

    Article  PubMed  CAS  Google Scholar 

  42. Mátés L et al (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41:753–761

    Article  PubMed  Google Scholar 

  43. Patton EE, Zon LI (2001) The art and design of genetic screens: zebrafish. Nat Rev Genet 2:956–966

    Article  PubMed  CAS  Google Scholar 

  44. Schneider A, Leister D (2006) Forward genetic screening of insertional mutants. Methods Mol Biol 323:147–161

    PubMed  CAS  Google Scholar 

  45. Yergeau DA, Mead PE (2007) Manipulating the Xenopus genome with transposable elements. Genome Biol 8(Suppl 1):S11

    Article  PubMed  Google Scholar 

  46. Sakamoto H et al (2005) Towards systematic identification of Plasmodium essential genes by transposon shuttle mutagenesis. Nucleic Acids Res 33:e174

    Article  PubMed  Google Scholar 

  47. Balu B et al (2005) High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. Proc Natl Acad Sci USA 102:16391–16396

    Article  PubMed  CAS  Google Scholar 

  48. Fonager J et al (2011) Development of the piggyBac transposable system for Plasmodium berghei and its application for random mutagenesis in malaria parasites. BMC Genomics 12:155

    Article  PubMed  CAS  Google Scholar 

  49. Balu B, Adams JH (2006) Functional genomics of Plasmodium falciparum through transposon-mediated mutagenesis. Cell Microbiol 8:1529–1536

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Waters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Philip, N., Orr, R., Waters, A.P. (2012). Transfection of Rodent Malaria Parasites. In: Ménard, R. (eds) Malaria. Methods in Molecular Biology, vol 923. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-026-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-026-7_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-025-0

  • Online ISBN: 978-1-62703-026-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics