Skip to main content

Analysis of DNA Damage and Repair in Nuclear and Mitochondrial DNA of Animal Cells Using Quantitative PCR

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 920))

Abstract

This chapter was written as a guide to using the long-amplicon quantitative PCR (QPCR) assay for the measurement of DNA damage in mammalian as well as nonmammalian species such as Caenorhabditis elegans (nematodes), Drosophila melanogaster (fruit flies), and two species of fish (Fundulus heteroclitus and Danio rerio). Since its development in the early 1990s (Kalinowski et al., Nucleic Acids Res 20:3485–3494, 1992; Salazar and Van Houten, Mutat Res 385:139–149, 1997; Yakes and Van Houten, Proc Natl Acad Sci USA 94:514–519, 1997), the QPCR assay has been widely used to measure DNA damage and repair kinetics in nuclear and mitochondrial genomes after genotoxin exposure (Yakes and Van Houten, Proc Natl Acad Sci USA 94:514–519, 1997; Santos et al., J Biol Chem 278:1728–1734, 2003; Mandavilli et al., Mol Brain Res 133:215–223, 2005). One of the main strengths of the assay is that the labor-intensive and artifact-generating step of mitochondrial isolation is not needed for the accurate measurement of mitochondrial DNA copy number and damage. Below we present the advantages and limitations of using QPCR to assay DNA damage in animal cells and provide a detailed protocol of the QPCR assay that integrates its usage in newly developed animal systems.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ponti M, Forrow SM, Souhami RL, D’Incalci M, Hartley JA (1991) Measurement of the sequence specificity of covalent DNA modification by antineoplastic agents using Taq DNA polymerase. Nucleic Acids Res 19:2929–2933

    Article  PubMed  CAS  Google Scholar 

  2. Ayala-Torres S, Chen Y, Svoboda T, Rosenblatt J, Van Houten B (2000) Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction. Methods 22:135–147

    Article  PubMed  CAS  Google Scholar 

  3. Santos JH, Meyer JN, Mandavilli BS, Van Houten B (2006) Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol 314:183–199

    Article  PubMed  CAS  Google Scholar 

  4. Kalinowski DP, Illenye S, Van Houten B (1992) Analysis of DNA damage and repair in murine leukemia L1210 cells using a quantitative polymerase chain reaction assay. Nucleic Acids Res 20:3485–3494

    Article  PubMed  CAS  Google Scholar 

  5. Jennerwein MM, Eastman A (1991) A polymerase chain reaction-based method to detect cisplatin adducts in specific genes. Nucleic Acids Res 19:6209–6214

    Article  PubMed  CAS  Google Scholar 

  6. Salazar JJ, Van Houten B (1997) Preferential mitochondrial DNA injury caused by glucose oxidase as a steady generator of hydrogen peroxide in human fibroblasts. Mutat Res 385:139–149

    Article  PubMed  CAS  Google Scholar 

  7. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519

    Article  PubMed  CAS  Google Scholar 

  8. Chen KH, Yakes FM, Srivastava DK, Singhal RK, Sobol RW, Horton JK, Van Houten B, Wilson SH (1998) Up-regulation of base excision repair correlates with enhanced protection against a DNA damaging agent in mouse cell lines. Nucleic Acids Res 26:2001–2007

    Article  PubMed  CAS  Google Scholar 

  9. Ballinger SW, Patterson C, Yan CN, Doan R, Burow DL, Young CG, Yakes FM, Van Houten B, Ballinger CA, Freeman BA et al (2000) Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res 86:960–966

    Article  PubMed  CAS  Google Scholar 

  10. Mandavilli BS, Ali SF, Van Houten B (2000) DNA damage in brain mitochondria caused by aging and MPTP treatment. Brain Res 885:45–52

    Article  PubMed  CAS  Google Scholar 

  11. Ballinger SW, Van Houten B, Jin GF, Conklin CA, Godley BF (1999) Hydrogen peroxide causes significant mitochondrial damage in human RPE cells. Exp Eye Res 68:765–772

    Article  PubMed  CAS  Google Scholar 

  12. Van Houten B, Chen Y, Nicklas JA, Rainville IR, O’Neill JP (1998) Development of long PCR techniques to analyze deletion mutations of the human hprt gene. Mutat Res 403:171–175

    Article  PubMed  Google Scholar 

  13. Boyd WA, Crocker TL, Rodriguez AM, Leung MC, Lehmann DW, Freedman JH, Van Houten B, Meyer JN (2010) Nucleotide excision repair genes are expressed at low levels and are not detectably inducible in Caenorhabditis elegans somatic tissues, but their function is required for normal adult life after UVC exposure. Mutat Res 683:57–67

    Article  PubMed  CAS  Google Scholar 

  14. Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4:e4160

    Article  PubMed  Google Scholar 

  15. Wang AL, Lukas TJ, Yuan M, Neufeld AH (2008) Increased mitochondrial DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol Vis 14:644–651

    PubMed  Google Scholar 

  16. Acevedo-Torres K, Berrios L, Rosario N, Dufault V, Skatchkov S, Eaton MJ, Torres-Ramos CA, Ayala-Torres S (2009) Mitochondrial DNA damage is a hallmark of chemically induced and the R6/2 transgenic model of Huntington’s disease. DNA Repair (Amst) 8:126–136

    Article  CAS  Google Scholar 

  17. Bonner M, Kmiec EB (2009) DNA breakage associated with targeted gene alteration directed by DNA oligonucleotides. Mutat Res 669:85–94

    Article  PubMed  CAS  Google Scholar 

  18. Khurana RN, Parikh JG, Saraswathy S, Wu GS, Rao NA (2008) Mitochondrial oxidative DNA damage in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 49:3299–3304

    Article  PubMed  Google Scholar 

  19. Haugen AC, Di Prospero NA, Parker JS, Fannin RD, Chou J, Meyer JN, Halweg C, Collins JB, Durr A, Fischbeck K et al (2010) Altered gene expression and DNA damage in peripheral blood cells from Friedreich’s ataxia patients: cellular model of pathology. PLoS Genet 6:e1000812

    Article  PubMed  Google Scholar 

  20. Chatterjee A, Mambo E, Zhang Y, Deweese T, Sidransky D (2006) Targeting of mutant hogg1 in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress. BMC Cancer 6:235

    Article  PubMed  Google Scholar 

  21. Duxin JP, Dao B, Martinsson P, Rajala N, Guittat L, Campbell JL, Spelbrink JN, Stewart SA (2009) Human Dna2 is a nuclear and mitochondrial DNA maintenance protein. Mol Cell Biol 29:4274–4282

    Article  PubMed  CAS  Google Scholar 

  22. Jung D, Cho Y, Collins LB, Swenberg JA, Di Giulio RT (2009) Effects of benzo(a)pyrene on mitochondrial and nuclear DNA damage in Atlantic killifish (Fundulus heteroclitus) from a creosote-contaminated and reference site. Aquat Toxicol 95:44–51

    Article  PubMed  CAS  Google Scholar 

  23. Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339:1–9

    Article  PubMed  CAS  Google Scholar 

  24. Belousova EA, Rechkunova NI, Lavrik OI (2006) Thermostable DNA polymerases can perform translesion synthesis using 8-oxoguanine and tetrahydrofuran-containing DNA templates. Biochim Biophys Acta 1764:97–104

    Article  PubMed  CAS  Google Scholar 

  25. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  PubMed  CAS  Google Scholar 

  26. Meyer JN, Boyd WA, Azzam GA, Haugen AC, Freedman JH, Van Houten B (2007) Decline of nucleotide excision repair capacity in aging Caenorhabditis elegans. Genome Biol 8:R70

    Article  PubMed  Google Scholar 

  27. Hunter SE, Jung D, Di Giulio RT, Meyer JN (2010) The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number. Methods 51:444–451

    Article  PubMed  CAS  Google Scholar 

  28. Cabrera G, Barria C, Fernandez C, Sepulveda S, Valenzuela L, Kemmerling U, Galanti N (2011) DNA repair BER pathway inhibition increases cell death caused by oxidative DNA damage in Trypanosoma cruzi. J Cell Biochem 112:2189–2199

    Google Scholar 

  29. Jung D, Cho Y, Meyer JN, Di Giulio RT (2009) The long amplicon quantitative PCR for DNA damage assay as a sensitive method of assessing DNA damage in the environmental model, Atlantic killifish (Fundulus heteroclitus). Comp Biochem Physiol C Toxicol Pharmacol 149:182–186

    Article  PubMed  Google Scholar 

  30. Simsek D, Furda A, Gao Y, Artus J, Brunet E, Hadjantonakis A, Van Houten B, Shuman S, McKinnon PJ, Jasin M (2011) Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair. Nature 471:245–248

    Google Scholar 

  31. Das BB, Dexheimer TS, Maddali K, Pommier Y (2010) Role of tyrosyl-DNA phosphodiesterase (TDP1) in mitochondria. Proc Natl Acad Sci USA 107:19790–19795

    Google Scholar 

  32. Karunadharma PP, Nordgaard CL, Olsen TW, Ferrington DA (2010) Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Invest Ophthalmol Vis Sci 51:5470–5479.

    Google Scholar 

  33. Lin H, Xu H, Liang FQ, Hao L, Gupta P, Havey AN, Boulton ME, Godley BF (2011) Mitochondrial DNA damage and repair in RPE associated with aging and age-related macular degeneration. Invest Opthalmol Vis Sci 52:3521–3529

    Google Scholar 

  34. Zhang Y, Zhang L, Zhang L, Bai J, Ge H, Liu P (2010) Expression changes in DNA repair enzymes and mitochondrial DNA damage in aging rat lens. Mol Vis 16:1754–1763

    PubMed  CAS  Google Scholar 

  35. Cheng S, Chen Y, Monforte JA, Higuchi R, Van Houten B (1995) Template integrity is essential for PCR amplification of 20- to 30-kb sequences from genomic DNA. PCR Methods Appl 4:294–298

    Article  PubMed  CAS  Google Scholar 

  36. Meyer JN (2010) QPCR: a tool for analysis of mitochondrial and nuclear DNA damage in ecotoxicology. Ecotoxicology 19:804–811

    Article  PubMed  CAS  Google Scholar 

  37. Santos JH, Hunakova L, Chen Y, Bortner C, Van Houten B (2003) Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J Biol Chem 278:1728–1734

    Article  PubMed  CAS  Google Scholar 

  38. Mandavilli BS, Boldogh I, Van Houten B (2005) 3-nitroproprionic acid-induced hydrogen peroxide, mitochondrial DNA damage, and cell death are attenuated by Bcl-2 overexpression in PC12 cells. Mol Brain Res 133:215–223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bennett Van Houten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Furda, A.M., Bess, A.S., Meyer, J.N., Van Houten, B. (2012). Analysis of DNA Damage and Repair in Nuclear and Mitochondrial DNA of Animal Cells Using Quantitative PCR. In: Bjergbæk, L. (eds) DNA Repair Protocols. Methods in Molecular Biology, vol 920. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-998-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-998-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-997-6

  • Online ISBN: 978-1-61779-998-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics