Skip to main content

Electrophoretic Mobility Shift Assays for Protein–DNA Complexes Involved in DNA Repair

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 920))

Abstract

The electrophoretic mobility shift assay (EMSA) can be used to study proteins that bind to DNA structures created by DNA-damaging agents. UV-damaged DNA-binding protein (UV-DDB), which is involved in nucleotide excision repair, binds to DNA damaged by ultraviolet radiation or the anticancer drug cisplatin. Ku, XRCC4/Ligase IV, and DNA–PKcs, which are involved in the repair of DNA double-strand breaks by nonhomologous end joining, assemble in complexes at DNA ends. This chapter will describe several EMSA protocols for detecting different DNA repair protein–DNA complexes. To obtain additional information, one can apply variations of the EMSA, which include the reverse EMSA to detect binding of 35S-labeled protein to damaged DNA, and the antibody supershift assay to detect the presence of a specific protein in the protein–DNA complex.

Authors Chun Tsai, Vaughn Smider, Byung Joon Hwang shared equally in this work.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fried M, Crothers DM (1981) Equilibrium and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525

    Article  PubMed  CAS  Google Scholar 

  2. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to the components of the E. coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3059

    Article  PubMed  CAS  Google Scholar 

  3. Tang J, Chu G (2002) Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. DNA Repair 1:601–616

    Article  PubMed  CAS  Google Scholar 

  4. Tsai CJ, Kim SA, Chu G (2007) Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends. Proc Natl Acad Sci USA 104:7851–7856

    Article  PubMed  CAS  Google Scholar 

  5. Chu G, Chang E (1988) Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242:564–567

    Article  PubMed  CAS  Google Scholar 

  6. Singh H et al (1986) A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319:154–158

    Article  PubMed  CAS  Google Scholar 

  7. Hwang BJ, Chu G (1993) Purification and characterization of a protein that binds to damaged DNA. Biochemistry 32:1657–1666

    Article  PubMed  CAS  Google Scholar 

  8. Hwang BJ, Liao J, Chu G (1996) Isolation of a cDNA encoding a UV-damaged DNA binding factor defective in xeroderma pigmentosum group E cells. Mutat Res 362:105–117

    Article  PubMed  Google Scholar 

  9. Chu G, Chang E (1990) Cisplatin-resistant cells express increased levels of a factor that recognizes damaged DNA. Proc Natl Acad Sci USA 87:3324–3327

    Article  PubMed  CAS  Google Scholar 

  10. Keeney S et al (1994) Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage-binding protein. Proc Natl Acad Sci USA 91:4053–4056

    Article  PubMed  CAS  Google Scholar 

  11. Tang J et al (2000) Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell 5:737–744

    Article  PubMed  CAS  Google Scholar 

  12. Rathmell WK, Chu G (1994) A DNA end-binding factor involved in double-strand break repair and V(D)J recombination. Mol Cell Biol 14:4741–4748

    PubMed  CAS  Google Scholar 

  13. Rathmell WK, Chu G (1994) Involvement of the Ku autoantigen in the cellular response to DNA double-strand breaks. Proc Natl Acad Sci USA 91:7623–7627

    Article  PubMed  CAS  Google Scholar 

  14. Smider V et al (1994) Restoration of X-ray resistance and V(D)J recombination in mutant cells by Ku cDNA. Science 266:288–291

    Article  PubMed  CAS  Google Scholar 

  15. Taccioli GE et al (1994) Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265:1442–1445

    Article  PubMed  CAS  Google Scholar 

  16. Hammarsten O, Chu G (1998) DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. Proc Natl Acad Sci USA 95:525–530

    Article  PubMed  CAS  Google Scholar 

  17. Nick McElhinny SA et al (2000) Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol 20:2996–3003

    Article  PubMed  CAS  Google Scholar 

  18. Patterson M, Chu G (1989) Evidence that xeroderma pigmentosum cells from complementation group E are deficient in a homolog of yeast photolyase. Mol Cell Biol 9:5105–5112

    PubMed  CAS  Google Scholar 

  19. Fox M, Feldman B, Chu G (1994) A novel role for DNA photolyase: binding to drug-induced DNA damage is associated with enhanced cytotoxicity in yeast. Mol Cell Biol 14:8071–8077

    PubMed  CAS  Google Scholar 

  20. Jiricny J (1994) Colon cancer and DNA repair: have mismatches met their match? Trends Genet 10:164–168

    Article  PubMed  CAS  Google Scholar 

  21. Donahue BA et al (1990) Characterization of a DNA damage-recognition protein from mammalian cells that binds specifically to intrastrand d(GpG) and d(ApG) DNA adducts of the anticancer drug cisplatin. Biochemistry 29:5872–5880

    Article  PubMed  CAS  Google Scholar 

  22. Toney J et al (1989) Isolation of cDNAs encoding a human protein that binds selectively to DNA modified by the anticancer drug cis-diamminedichloroplatinum(II). Proc Natl Acad Sci USA 86:8328–8332

    Article  PubMed  CAS  Google Scholar 

  23. Brown SJ, Kellet PJ, Lippard SJ (1993) Ixr1, a yeast protein that binds to platinated DNA and confers sensitivity to cisplatin. Science 261:603–605

    Article  PubMed  CAS  Google Scholar 

  24. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  26. Payne A, Chu G (1994) Xeroderma pigmentosum group E binding factor recognizes a broad spectrum of DNA damage. Mutat Res 310:89–102

    Article  PubMed  CAS  Google Scholar 

  27. DeFazio L et al (2002) Synapsis of DNA ends by the DNA-dependent protein kinase. EMBO J 21:3192–3200

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tsai, C., Smider, V., Hwang, B.J., Chu, G. (2012). Electrophoretic Mobility Shift Assays for Protein–DNA Complexes Involved in DNA Repair. In: Bjergbæk, L. (eds) DNA Repair Protocols. Methods in Molecular Biology, vol 920. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-998-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-998-3_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-997-6

  • Online ISBN: 978-1-61779-998-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics