Skip to main content

Quantifying Kinetics of Net Ion Fluxes from Plant Tissues by Non-invasive Microelectrode Measuring MIFE Technique

  • Protocol
  • First Online:
Plant Salt Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 913))

Abstract

Non-invasive microelectrode ion flux measuring (the MIFE system) allows concurrent quantification of net fluxes of several ions with high spatial (several μm) and temporal (ca 5 s) resolution. Over the last 10 years, the MIFE system has been widely used to study various aspects of salt stress signaling and adaptation in plants. This chapter summarizes some major findings in the area such as using MIFE for deciphering the specific and non-specific components of salinity stress, resolving the role of the plasma membrane H+-pump in salinity responses, proving K+ homeostasis as a key feature of salinity tolerance, and discovering the mechanisms behind the ameliorative effects of Ca2+ and other mitigating factors (such as polyamines or compatible solutes). The full protocols for microelectrode fabrication, calibration, and use are then given, and two basic routines for measuring net K+ and Na+ fluxes from salinity stressed roots are described in the context of plant screening for salt stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blumwald E, Aharon GS, Lam BCH (1998) Early signal transduction pathways in plant-pathogen interactions. Trends Plant Sci 3:342–346

    Article  Google Scholar 

  2. Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    PubMed  CAS  Google Scholar 

  3. Zimmermann S, Ehrhardt T, Plesch G et al (1999) Ion channels in plant signaling. Cell Mol Life Sci 55:183–203

    Article  CAS  Google Scholar 

  4. Spalding EP (2000) Ion channels and the transduction of light signals. Plant Cell Environ 23:665–674

    Article  PubMed  CAS  Google Scholar 

  5. Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  PubMed  CAS  Google Scholar 

  6. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

  7. Palmgren MG (1991) Regulation of plasma membrane H+-ATPase activity. Physiol Plant 83:314–323

    Article  CAS  Google Scholar 

  8. Shabala SN, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129:290–299

    Article  PubMed  CAS  Google Scholar 

  9. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  PubMed  CAS  Google Scholar 

  10. Shabala S (2006) Non-invasive microelectrode ion flux measurements in plant stress physiology. In: Volkov AG (ed) Plant electrophysiology—theory and methods. Springer-Verlag, Berlin Heidelberg, pp 35–71

    Chapter  Google Scholar 

  11. Shabala S, Shabala L, Van Volkenburgh E (2003) Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol 30:507–514

    Article  CAS  Google Scholar 

  12. Tester M (1997) Techniques for studying ion channels: an introduction. J Exp Bot 48:353–359

    Article  PubMed  CAS  Google Scholar 

  13. Knight MR, Campbell AK, Smith SM et al (1991) Transgenic plant aequorin reports the effects of touch and cold-shock elicitors on cytoplasmic calcium. Nature 352:524–526

    Article  PubMed  CAS  Google Scholar 

  14. Roos W (2000) Ion mapping in plant cells—methods and applications in signal transduction research. Planta 210:347–370

    Article  PubMed  CAS  Google Scholar 

  15. Miller AJ (1996) Ion-selective microelectrodes for measurement of intracellular ion concentrations. Methods Cell Biol 49A:275–291

    Google Scholar 

  16. Ratcliffe RG (1997) In vivo NMR studies of the metabolic response of plant tissues to anoxia. Ann Bot 79:39–48

    Article  CAS  Google Scholar 

  17. Tomos AD, Hinde P, Richardson P et al (1994) Microsampling and measurements of solutes in single cells. In: Harris N, Oparka KJ (eds) Plant cell biology. A practical approach. IRL Press, Oxford, pp 297–314

    Google Scholar 

  18. Tomos AD, Leigh RA (1999) The pressure probe: a versatile tool in plant cell physiology. Annu Rev Plant Physiol Plant Mol Biol 50:447–472

    Article  PubMed  CAS  Google Scholar 

  19. Shabala S, Newman I, Whittington J et al (1998) Protoplast ion fluxes: their ­measurement and variation with time, position and osmoticum. Planta 204:146–152

    Article  CAS  Google Scholar 

  20. Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1–14

    Article  PubMed  CAS  Google Scholar 

  21. Shabala L et al (2006) Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment. FEMS Microbiol Rev 30:472–486

    Article  PubMed  CAS  Google Scholar 

  22. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  23. Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825–837

    Article  CAS  Google Scholar 

  24. Chen Z, Newman I, Zhou M et al (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246

    Article  CAS  Google Scholar 

  25. Ayala F, Oleary JW, Schumaker KS (1996) Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr in response to NaCl. J Exp Bot 47:25–32

    Article  CAS  Google Scholar 

  26. Vera-Estrella R, Barkla BJ, Bohnert HJ et al (1999) Salt stress in Mesembryanthemum crystallinum L cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta 207:426–435

    Article  PubMed  CAS  Google Scholar 

  27. Serrano R, Mulet JM, Rios G et al (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    CAS  Google Scholar 

  28. Shabala L, Cuin TA, Newman IA et al (2005) Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222:1041–1050

    Article  PubMed  CAS  Google Scholar 

  29. Chen Z, Pottosin II, Cuin TA et al (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725

    Article  PubMed  CAS  Google Scholar 

  30. Chen Z, Zhou MX, Newman IA et al (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162

    Article  CAS  Google Scholar 

  31. Chen Z, Shabala S, Mendham N et al (2008) Combining ability of salinity tolerance on the basis of NaCl-induced K+ flux from roots of barley. Crop Sci 48:1382–1388

    Article  CAS  Google Scholar 

  32. Cuin TA, Zhou MZ, Parsons D et al (2012) Genetic behaviour of physiological traits conferring cytosolic K/Na homeostasis in wheat. Plant Biol 14(3):438–446

    Article  PubMed  CAS  Google Scholar 

  33. Demidchik V, Shabala SN, Coutts KB et al (2003) Free oxygen radicals regulate plasma membrane Ca2+ and K+- permeable channels in plant root cells. J Cell Sci 116:81–88

    Article  PubMed  CAS  Google Scholar 

  34. Shabala S, Cuin TA, Prismall L et al (2007) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227:189–197

    Article  PubMed  CAS  Google Scholar 

  35. Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885

    Article  PubMed  CAS  Google Scholar 

  36. Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60:709–711

    Article  PubMed  CAS  Google Scholar 

  37. Demidchik V, Cuin TA, Svistunenko D et al (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    Article  PubMed  CAS  Google Scholar 

  38. Cramer GR, Lynch J, Lauchli A et al (1987) Influx of Na+, K+ and Ca2+ into roots of salt-stressed cotton seedlings. Effects of supplemental Ca2+. Plant Physiol 83:510–516

    Article  PubMed  CAS  Google Scholar 

  39. Reid RJ, Smith FA (2000) The limits of sodium/calcium interactions in plant growth. Aust J Plant Physiol 27:709–715

    CAS  Google Scholar 

  40. Rengel Z (1992) Role of calcium in aluminium toxicity. New Phytol 121:499–513

    Article  CAS  Google Scholar 

  41. Tyerman SD, Skerrett M, Garrill A et al (1997) Pathways for the permeation of Na+ and Cl- into protoplasts derived from the cortex of wheat roots. J Exp Bot 48:459–480

    Article  PubMed  CAS  Google Scholar 

  42. Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387

    Article  PubMed  CAS  Google Scholar 

  43. Shabala S, Shabala L, Van Volkenburgh E et al (2005) Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. J Exp Bot 56:1369–1378

    Article  PubMed  CAS  Google Scholar 

  44. Shabala S, Demidchik V, Shabala L et al (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665

    Article  PubMed  CAS  Google Scholar 

  45. Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol 46:1924–1933

    Article  PubMed  CAS  Google Scholar 

  46. Cuin TA, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225:753–761

    Article  PubMed  CAS  Google Scholar 

  47. Chen Z, Cuin TA, Zhou M et al (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    Article  PubMed  CAS  Google Scholar 

  48. Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-­selective cation channels. FEBS Lett 581:1993–1999

    Article  PubMed  CAS  Google Scholar 

  49. Pandolfi C, Pottosin I, Cuin T et al (2010) Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants. Plant Cell Physiol 51:422–434

    Article  PubMed  CAS  Google Scholar 

  50. Carden DE, Walker DJ, Flowers TJ et al (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683

    Article  PubMed  CAS  Google Scholar 

  51. Ryan PR, Newman IA, Arif I (1992) Rapid ­calcium exchange for protons and potassium in cell walls of Chara. Plant Cell Environ 15:675–683

    Article  CAS  Google Scholar 

  52. Shabala S, Newman I (2000) Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll: masking role of the cell wall. Ann Bot 85:681–686

    Article  CAS  Google Scholar 

  53. Cuin TA, Bose J, Stefano G et al (2011) Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ 34:947–961

    Article  PubMed  CAS  Google Scholar 

  54. Wherret T (2006) Aluminium toxicity, tolerance and amelioration in wheat. PhD Thesis. University of Tasmania.

    Google Scholar 

  55. James RA, Munns R, Von Caemmerer S, Trejo C, Miller C, Condon AG (2006) Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. Plant Cell Environ 29: 2185–2197

    Google Scholar 

Download references

Acknowledgements

This work was supported by the ARC and GRDC grants to Sergey Shabala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Shabala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shabala, S., Cuin, T.A., Shabala, L., Newman, I. (2012). Quantifying Kinetics of Net Ion Fluxes from Plant Tissues by Non-invasive Microelectrode Measuring MIFE Technique. In: Shabala, S., Cuin, T. (eds) Plant Salt Tolerance. Methods in Molecular Biology, vol 913. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-986-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-986-0_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-985-3

  • Online ISBN: 978-1-61779-986-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics