Skip to main content

Murine Aggregation Chimeras and Wholemount Imaging in Airway Stem Cell Biology

  • Protocol
  • First Online:
Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 916))

Abstract

Local tissue stem cells are known to exist in mammalian lungs but their role in epithelial maintenance remains unclear. We therefore developed murine aggregation chimera and wholemount imaging techniques to assess the contribution of these cells to lung homeostasis and repair. In this chapter we provide further details regarding the generation of murine aggregation chimera mice and their subsequent use in wholemount lung imaging. We also describe methods related to the interpretation of this data that allows for quantitative assessment of airway stem cell activation versus quiescence. Using these techniques, it is possible to compare the growth and differentiation capacity of various lung epithelial cells in normal, repairing, and diseased states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reynolds SD, Giangreco A, Power JH, Stripp BR (2000) Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 156:269–278

    Article  PubMed  CAS  Google Scholar 

  2. Giangreco A, Reynolds SD, Stripp BR (2002) Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161:173–182

    Article  PubMed  Google Scholar 

  3. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  PubMed  CAS  Google Scholar 

  4. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24:671–681

    PubMed  CAS  Google Scholar 

  5. Rawlins EL, Hogan BL (2008) Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol 295:L231–234

    Article  CAS  Google Scholar 

  6. Rawlins EL, Ostrowski LE, Randell SH, Hogan BL (2007) Lung development and repair: contribution of the ciliated lineage. Proc Natl Acad Sci USA 104:410–417

    Article  PubMed  CAS  Google Scholar 

  7. Stripp BR, Reynolds SD (2008) Maintenance and repair of the bronchiolar epithelium. Proc Am Thorac Soc 5:328–333

    Article  PubMed  Google Scholar 

  8. Evans MJ, Cabral-Anderson LJ, Freeman G (1978) Role of the Clara cell in renewal of the bronchiolar epithelium. Laboratory Investigation; A Journal of Technical Methods and Pathology 38:648–653

    PubMed  CAS  Google Scholar 

  9. Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46

    Article  PubMed  CAS  Google Scholar 

  10. Dor Y, Melton DA (2004) How important are adult stem cells for tissue maintenance? Cell Cycle (Georgetown Tex) 3:1104–1106

    Article  CAS  Google Scholar 

  11. Mead R, Schmidt GH, Ponder BA (1987) Calculating numbers of tissue progenitor cells using chimaeric animals. Dev Biol 121:273–276

    Article  PubMed  CAS  Google Scholar 

  12. Ponder BA, Schmidt GH, Wilkinson MM, Wood MJ, Monk M, Reid A (1985) Derivation of mouse intestinal crypts from single progenitor cells. Nature 313:689–691

    Article  PubMed  CAS  Google Scholar 

  13. Schmidt GH, Ponder BA (1987) From patterns to clones in chimaeric tissues. Bioessays 6:104–108

    Article  PubMed  CAS  Google Scholar 

  14. Schmidt GH, Wilkinson MM, Ponder BA (1986) Clonal analysis of chimaeric patterns in aortic endothelium. J Embryol Exp Morphol 93:267–280

    PubMed  CAS  Google Scholar 

  15. Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH (2007) A single type of progenitor cell maintains normal epidermis. Nature 446:185–189

    Article  PubMed  CAS  Google Scholar 

  16. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  PubMed  CAS  Google Scholar 

  17. Giangreco A, Arwert EN, Rosewell IR, Snyder J, Watt FM, Stripp BR (2009) Stem cells are dispensable for lung homeostasis but restore airways after injury. Proc Natl Acad Sci USA 106:9286–9291

    Article  PubMed  CAS  Google Scholar 

  18. Tarkowski AK (1961) Mouse chimaeras developed from fused eggs. Nature 190:857–860

    Article  PubMed  CAS  Google Scholar 

  19. Swenson ES, Xanthopoulos J, Nottoli T, McGrath J, Theise ND, Krause DS (2009) Chimeric mice reveal clonal development of pancreatic acini, but not islets. Biochem Biophys Res Commun 379:526–531

    Article  PubMed  Google Scholar 

  20. Jenkinson WE, Bacon A, White AJ, Anderson G, Jenkinson EJ (2008) An epithelial progenitor pool regulates thymus growth. J Immunol 181:6101–6108

    PubMed  CAS  Google Scholar 

  21. Nagy A (2003) Manipulating the mouse embryo: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  22. Green M, Bass S, Spear B (2009) A device for the simple and rapid transcervical transfer of mouse embryos eliminates the need for surgery and potential post-operative complications. Biotechniques 47:919–924

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Doug Winton and John Stingl for suggestions regarding interpretation of epithelial chimerism, Jessica Gruninger for embryo aggregations, and Virgilio Failla for assistance with Volocity Image analysis. The original study upon which this chapter is based was supported by funding from the US National Institutes of Health (to A.G.) and Cancer Research UK (to A.G. and I.R.). A.G. is currently supported by funding from the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Giangreco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rosewell, I.R., Giangreco, A. (2012). Murine Aggregation Chimeras and Wholemount Imaging in Airway Stem Cell Biology. In: Mace, K., Braun, K. (eds) Progenitor Cells. Methods in Molecular Biology, vol 916. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-980-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-980-8_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-979-2

  • Online ISBN: 978-1-61779-980-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics