Skip to main content

Media Composition: Amino Acids and Cellular Homeostasis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 912))

Abstract

Amino acids are beneficial for the developing preimplantation embryo and therefore form an important component of culture media. This chapter will critically review the importance of amino acids for preimplantation embryos and the impact of this research for the development of sequential culture media used in many assisted conception units. The advantages of culturing embryos in a full complement of amino acids, at close to physiological concentrations will be considered. Moreover, the noninvasive measurement of amino acid turnover by individual embryos, a method which holds great promise to assess developmental competency prior to transfer, will also be discussed. Thus, this chapter highlights the fundamental role of amino acids for the metabolic and homeostatic regulation of the preimplantation embryo.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Reeds PJ (2000) Dispensable and indispensable amino acids for humans. J Nutr 130:1835S–1840S

    PubMed  CAS  Google Scholar 

  2. Fűrst P, Stehle P (2004) What are the essential elements for the determination of amino acid requirements in humans? J Nutr 134(Suppl):1558S–1565S

    PubMed  Google Scholar 

  3. Brinster RL (1965) Studies on the development of mouse embryos in vitro. III. The effect of fixed-nitrogen source. J Exp Zool 158:69–77

    Article  PubMed  CAS  Google Scholar 

  4. Daniel JC, Krishnan RS (1967) Amino acid requirements for growth of the rabbit blastocyst in vitro. J Cell Physiol 70:155–160

    Article  PubMed  CAS  Google Scholar 

  5. Gardner DK, Lane M (1993) Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod 48:377–385

    Article  PubMed  CAS  Google Scholar 

  6. Lane M, Gardner DK (1994) Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J Reprod Fertil 102:305–312

    Article  PubMed  CAS  Google Scholar 

  7. Harris SE, Gopichandran N, Picton HM, Leese HJ, Orsi NM (2005) Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 61:992–1006

    Article  Google Scholar 

  8. Lane M, Gardner DK (1997) Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 109:153–164

    Article  PubMed  CAS  Google Scholar 

  9. Lawitts JA, Biggers JD (1993) Culture of preimplantation embryos. Methods Enzymol 225:153–164

    Article  PubMed  CAS  Google Scholar 

  10. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM (1995) Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev 14:232–238

    Article  Google Scholar 

  11. Nakazawa T, Ohashi K, Yamada M, Shinoda S, Saji F, Murata Y, Araki H (1997) Effect of different concentrations of amino acids in human serum and follicular fluid on the development of one-cell mouse embryos in vitro. J Reprod Fertil 111:327–332

    Article  PubMed  CAS  Google Scholar 

  12. Biggers JD, McGinnis LK, Raffin M (2000) Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol Reprod 63:281–293

    Article  PubMed  CAS  Google Scholar 

  13. Summers MC, McGinnis LK, Lawitts JA, Raffin M, Biggers JD (2000) IVF of mouse ova in a simplex optimized medium supplemented with amino acids. Hum Reprod 15:1791–1801

    Article  PubMed  CAS  Google Scholar 

  14. Rinaudo P, Schultz RM (2004) Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128:301–311

    Article  PubMed  CAS  Google Scholar 

  15. Devreker F, Winston RM, Hardy K (1998) Glutamine improves human preimplantation development in vitro. Fertil Steril 69:293–299

    Article  PubMed  CAS  Google Scholar 

  16. Devreker F, Van den Bergh M, Biramane J, Winston RL, Englert Y, Hardy K (1999) Effects of taurine on human embryo development in vitro. Hum Reprod 14:2350–2356

    Article  PubMed  CAS  Google Scholar 

  17. Devreker F, Hardy K, Van den Bergh M, Vannin AS, Emiliani S, Englert Y (2001) Amino acids promote human blastocyst development in vitro. Hum Reprod 16:749–756

    Article  PubMed  CAS  Google Scholar 

  18. Tay JI, Rutherford AJ, Killick SR, Maguiness SD, Partridge RJ, Leese HJ (1997) Human tubal fluid: production, nutrient composition and response to adrenergic agents. Hum Reprod 12:2451–2456

    Article  PubMed  CAS  Google Scholar 

  19. Houghton FD, Hawkhead JA, Humpherson PG, Hogg JE, Balen AH, Rutherford AJ, Leese HJ (2002) Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod 17:999–1005

    Article  PubMed  CAS  Google Scholar 

  20. Gardner DK, Lane M (1998) Culture of viable human blastocysts in defined sequential serum-free media. Hum Reprod 13(Suppl 3):148–159

    Article  PubMed  Google Scholar 

  21. Leese HJ (2002) Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 24:845–849

    Article  PubMed  Google Scholar 

  22. Stokes PJ, Hawkhead JA, Fawthrop RK, Picton HM, Sharma V, Leese HJ, Houghton FD (2007) Metabolism of human embryos following cryopreservation: implications for the safety and selection of embryos for transfer in clinical IVF. Hum Reprod 22:839–835

    Article  Google Scholar 

  23. Eckert JJ, Houghton FD, Hawkhead JA, Balen AH, Leese HJ, Picton HM, Cameron IT, Fleming TP (2007) Human embryos developing in vitro are susceptible to impaired epithelial junction biogenesis correlating with abnormal metabolic activity. Hum Reprod 22:2214–2224

    Article  PubMed  CAS  Google Scholar 

  24. Brison DR, Houghton FD, Falconer D, Roberts SA, Hawkhead J, Humpherson PG, Lieberman BA, Leese HJ (2004) Identification of viable human embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod 19:2319–2324

    Article  PubMed  CAS  Google Scholar 

  25. Sellens MH, Stein S, Sherman MI (1981) Protein and free amino acid content in preimplantation mouse embryos and in blastocysts under various culture conditions. J Reprod Fertil 61:307–315

    Article  PubMed  CAS  Google Scholar 

  26. Hobbs JH, Kaye PL (1985) Glycine transport in mouse eggs and preimplantation embryos. J Reprod Fertil 74:77–86

    Article  PubMed  CAS  Google Scholar 

  27. Dawson KM, Collins JL, Baltz JM (1998) Osmolarity-dependent glycine accumulation indicates a role for glycine as an organic osmolyte in early preimplantation mouse embryos. Biol Reprod 59:225–232

    Article  PubMed  CAS  Google Scholar 

  28. Steeves CL, Baltz JM (2005) Regulation of intracellular glycine as an organic osmolyte in early preimplantation mouse embryos. J Cell Physiol 204:273–279

    Article  PubMed  CAS  Google Scholar 

  29. Hammer MA, Kolajova M, Léveillé M, Claman P, Baltz JM (2000) Glycine transport by single human and mouse embryos. Hum Reprod 15:419–426

    Article  PubMed  CAS  Google Scholar 

  30. Van Winkle LJ, Haghighat N, Campione AL (1990) Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J Exp Zool 253:215–219

    Article  PubMed  Google Scholar 

  31. Dumoulin JC, Evers JL, Bras M, Pieters MH, Geraedts JP (1992) Positive effect of taurine on preimplantation development of mouse embryos in vitro. J Reprod Fertil 94:373–380

    Article  PubMed  CAS  Google Scholar 

  32. Dumoulin JC, Evers JL, Bakker JA, Bras M, Pieters MH, Geraedts JP (1992) Temporal effects of taurine on mouse preimplantation development in vitro. Hum Reprod 7:403–407

    PubMed  CAS  Google Scholar 

  33. Dumoulin JC, van Wissen LC, Menheere PP, Michiels AH, Geraedts JP, Evers JL (1997) Taurine acts as an osmolyte in human and mouse oocytes and embryos. Biol Reprod 56:739–744

    Article  PubMed  CAS  Google Scholar 

  34. Anas MH, Hammer MA, Lever M, Stanton JA, Baltz JM (2007) The organic osmolytes betaine and proline are transported by a shared system in early preimplantation mouse embryos. J Cell Physiol 210:266–277

    Article  PubMed  CAS  Google Scholar 

  35. Lawitts JA, Biggers JD (1992) Joint effects of sodium chloride, glutamine and glucose in mouse preimplantation embryo culture media. Mol Reprod Dev 31:89–194

    Article  Google Scholar 

  36. Edwards LJ, Williams DA, Gardner DK (1998) Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum Reprod 13: 3441–3448

    Article  PubMed  CAS  Google Scholar 

  37. Manser RC, Leese HJ, Houghton FD (2004) Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism. Biol Reprod 71:528–533

    Article  PubMed  CAS  Google Scholar 

  38. Martin PM, Sutherland AE (2001) Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol 240:183–193

    Article  Google Scholar 

  39. Martin PM, Sutherland AE, Van Winkle LJ (2003) Amino acid transport regulates blastocyst implantation. Biol Reprod 69:1101–1108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

I thank the UK Medical Research Council (G0701153) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franchesca D. Houghton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Houghton, F.D. (2012). Media Composition: Amino Acids and Cellular Homeostasis. In: Smith, G., Swain, J., Pool, T. (eds) Embryo Culture. Methods in Molecular Biology, vol 912. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-971-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-971-6_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-970-9

  • Online ISBN: 978-1-61779-971-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics