Skip to main content

Culture Systems: Physiological and Environmental Factors That Can Affect the Outcome of Human ART

  • Protocol
  • First Online:
Embryo Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 912))

Abstract

Many aspects of the embryo culture environment have been shown to affect embryo development and the subsequent outcomes of human ART. It is now becoming increasingly evident that embryo and later development can be affected by events and conditions that occur before, perhaps long before, the oocytes and sperm are collected and brought together in the ART laboratory. These include diet and metabolic disorders, general health and disease, physical and psychological stress, exposure to environmental estrogens and other toxins, pharmaceuticals, alcohol, smoking, and drug abuse. This paper discusses the known and potential effects of season of the year (or temperature) and environmental air pollution on the outcomes of human ART. It may be useful to advise ART patients to avoid high environmental temperature and air pollution. In addition, it is important for clinical embryologists to recognize that adverse outcomes may result from such exposures, and to incorporate this into the analysis of clinic data for the purposes of quality management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seamark RF, Robinson JS (1995) Potential health hazards of assisted human reproduction. Potential health problems stemming from assisted reproduction programmes. Hum Reprod 10:1321–1322

    PubMed  CAS  Google Scholar 

  2. Rieger D (1998) Effects of the in vitro chemical environment during early embryogenesis on subsequent development. Arch Toxicol Suppl 20:121–129

    PubMed  CAS  Google Scholar 

  3. Pool TB (2005) An update on embryo culture for human assisted reproductive technology: media, performance, and safety. Semin Reprod Med 23:309–318

    PubMed  CAS  Google Scholar 

  4. Gardner DK, Lane M (2007) Embryo ­culture systems. In: Gardner DK (ed) In vitro fertilization: a practical approach. Informa Healthcare, New York, London, pp 221–282

    Google Scholar 

  5. Leese HJ, Sturmey RG, Baumann CG, McEvoy TG (2007) Embryo viability and metabolism: obeying the quiet rules. Hum Reprod 22:3047–3050

    PubMed  Google Scholar 

  6. Thompson JG, Mitchell M, Kind KL (2007) Embryo culture and long-term consequences. Reprod Fertil Dev 19:43–52

    PubMed  Google Scholar 

  7. Duranthon V, Watson AJ, Lonergan P (2008) Preimplantation embryo programming: transcription, epigenetics, and culture environment. Reproduction 135:141–150

    PubMed  CAS  Google Scholar 

  8. Vajta G, Rienzi L, Cobo A, Yovich J (2010) Embryo culture: can we perform better than nature? Reprod Biomed Online 20:453–469

    PubMed  Google Scholar 

  9. Lee TM, Zucker I (1988) Vole infant development is influenced perinatally by maternal photoperiodic history. Am J Physiol 255:R831–R838

    PubMed  CAS  Google Scholar 

  10. Lumey LH (1992) Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944–1945. Paediatr Perinat Epidemiol 6:240–253

    PubMed  CAS  Google Scholar 

  11. Sharpe RM, Franks S (2002) Environment, lifestyle and infertility – an inter-generational issue. Nat Cell Biol 4(Suppl):s33–s40

    PubMed  Google Scholar 

  12. Swain JE, Pool TB (2008) ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update 14:431–446

    PubMed  Google Scholar 

  13. Van Blerkom J, Antczak M, Schrader R (1997) The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod 12:1047–1055

    PubMed  Google Scholar 

  14. Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, Sirard MA (2008) Identification of differentially expressed ­markers in human follicular cells associated with competent oocytes. Hum Reprod 23:1118–1127

    PubMed  CAS  Google Scholar 

  15. Adriaenssens T, Wathlet S, Segers I, Verheyen G, De Vos A, Van der Elst J, Coucke W, Devroey P, Smitz J (2010) Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Hum Reprod 25:1259–1270

    PubMed  CAS  Google Scholar 

  16. Wang HX, Tong D, El-Gehani F, Tekpetey FR, Kidder GM (2009) Connexin expression and gap junctional coupling in human cumulus cells: contribution to embryo quality. J Cell Mol Med 13:972–984

    PubMed  CAS  Google Scholar 

  17. Smitz JE, Thompson JG, Gilchrist RB (2011) The promise of in vitro maturation in assisted reproduction and fertility preservation. Semin Reprod Med 29:24–37

    PubMed  CAS  Google Scholar 

  18. Heindryckx B, De Gheselle S, Lierman S, Gerris J, De Sutter P (2011) Efficiency of polarized microscopy as a predictive tool for human oocyte quality. Hum Reprod 26:535–544

    PubMed  CAS  Google Scholar 

  19. Shen Y, Stalf T, Mehnert C, Eichenlaub-Ritter U, Tinneberg HR (2005) High magnitude of light retardation by the zona pellucida is associated with conception cycles. Hum Reprod 20:1596–1606

    PubMed  CAS  Google Scholar 

  20. Nagy ZP, Jones-Colon S, Roos P, Botros L, Greco E, Dasig J, Behr B (2009) Metabolomic assessment of oocyte viability. Reprod Biomed Online 18:219–225

    PubMed  Google Scholar 

  21. Goovaerts IG, Leroy JL, Jorssen EP, Bols PE (2010) Noninvasive bovine oocyte quality assessment: possibilities of a single oocyte culture. Theriogenology 74:1509–1520

    PubMed  CAS  Google Scholar 

  22. Sugulle A, Dochi O, Koyama H (2008) Developmental competence of bovine oocytes selected by brilliant cresyl blue staining: effect of the presence of corpus luteum on embryo development. J Mamm Ova Res 25:50–55

    Google Scholar 

  23. Bhojwani S, Alm H, Torner H, Kanitz W, Poehland R (2007) Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer. Theriogenology 67:341–345

    PubMed  CAS  Google Scholar 

  24. Manjunatha BM, Gupta PS, Devaraj M, Ravindra JP, Nandi S (2007) Selection of developmentally competent buffalo oocytes by brilliant cresyl blue staining before IVM. Theriogenology 68:1299–1304

    PubMed  CAS  Google Scholar 

  25. Wongsrikeao P, Otoi T, Yamasaki H, Agung B, Taniguchi M, Naoi H, Shimizu R, Nagai T (2006) Effects of single and double exposure to brilliant cresyl blue on the selection of ­porcine oocytes for in vitro production of embryos. Theriogenology 66:366–372

    PubMed  CAS  Google Scholar 

  26. Spikings EC, Alderson J, St John JC (2007) Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol Reprod 76:327–335

    PubMed  CAS  Google Scholar 

  27. Munne S, Fischer J, Warner A, Chen S, Zouves C, Cohen J (2006) Preimplantation genetic diagnosis significantly reduces pregnancy loss in infertile couples: a multicenter study. Fertil Steril 85:326–332

    PubMed  CAS  Google Scholar 

  28. Kuliev A, Zlatopolsky Z, Kirillova I, Spivakova J, Cieslak Janzen J (2011) Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reprod Biomed Online 22:2–8

    PubMed  Google Scholar 

  29. Montag M, van der Ven K, Rosing B, van der Ven H (2009) Polar body biopsy: a viable alternative to preimplantation genetic diagnosis and screening. Reprod Biomed Online 18(Suppl 1):6–11

    PubMed  Google Scholar 

  30. Lewis SE (2007) Is sperm evaluation useful in predicting human fertility? Reproduction 134:31–40

    PubMed  CAS  Google Scholar 

  31. Salumets A, Suikkari AM, Mols T, Soderstrom-Anttila V, Tuuri T (2002) Influence of oocytes and spermatozoa on early embryonic development. Fertil Steril 78:1082–1087

    PubMed  Google Scholar 

  32. Dubey A, Dayal MB, Frankfurter D, Balazy P, Peak D, Gindoff PR (2008) The influence of sperm morphology on preimplantation genetic diagnosis cycles outcome. Fertil Steril 89:1665–1669

    PubMed  Google Scholar 

  33. Check JH, Bollendorf A, Wilson C, Summers-Chase D, Horwath D, Yuan W (2007) A retrospective comparison of pregnancy outcome following conventional oocyte insemination vs intracytoplasmic sperm injection for isolated abnormalities in sperm morphology using strict criteria. J Androl 28:607–612

    PubMed  Google Scholar 

  34. Barratt CL, Aitken RJ, Bjorndahl L, Carrell DT, de Boer P, Kvist U, Lewis SE, Perreault SD, Perry MJ, Ramos L, Robaire B, Ward S, Zini A (2010) Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications – a position report. Hum Reprod 25:824–838

    PubMed  Google Scholar 

  35. Lewis SE, Simon L (2010) Clinical implications of sperm DNA damage. Hum Fertil (Camb) 13:201–207

    Google Scholar 

  36. Zini A, Jamal W, Cowan L, Al-Hathal N (2011) Is sperm DNA damage associated with IVF embryo quality? A systematic review. J Assist Reprod Genet 28(5):391–397

    PubMed  Google Scholar 

  37. Virro MR, Larson-Cook KL, Evenson DP (2004) Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 81:1289–1295

    PubMed  Google Scholar 

  38. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D (2004) Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril 82:378–383

    PubMed  Google Scholar 

  39. Nasr-Esfahani MH, Salehi M, Razavi S, Anjomshoa M, Rozbahani S, Moulavi F, Mardani M (2005) Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod Biomed Online 11:198–205

    PubMed  CAS  Google Scholar 

  40. Meseguer M, Martinez-Conejero JA, O’Connor JE, Pellicer A, Remohi J, Garrido N (2008) The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril 89:1191–1199

    PubMed  Google Scholar 

  41. Avendano C, Franchi A, Duran H, Oehninger S (2009) DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril 94:549–557

    PubMed  Google Scholar 

  42. Avendano C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S (2009) Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril 91:1077–1084

    PubMed  Google Scholar 

  43. Sousa AP, Tavares RS, Velez de la Calle JF, Figueiredo H, Almeida V, Almeida-Santos T, Ramalho-Santos J (2009) Dual use of Diff-Quik-like stains for the simultaneous evaluation of human sperm morphology and chromatin status. Hum Reprod 24:28–36

    PubMed  Google Scholar 

  44. Meseguer M, Santiso R, Garrido N, Garcia-Herrero S, Remohi J, Fernandez JL (2011) Effect of sperm DNA fragmentation on pregnancy outcome depends on oocyte quality. Fertil Steril 95:124–128

    PubMed  CAS  Google Scholar 

  45. Aitken RJ (2004) Founders’ Lecture. Human spermatozoa: fruits of creation, seeds of doubt. Reprod Fertil Dev 16:655–664

    PubMed  Google Scholar 

  46. Zorn B, Vidmar G, Meden-Vrtovec H (2003) Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int J Androl 26:279–285

    PubMed  CAS  Google Scholar 

  47. Meseguer M, de los Santos MJ, Simon C, Pellicer A, Remohi J, Garrido N (2006) Effect of sperm glutathione peroxidases 1 and 4 on embryo asymmetry and blastocyst quality in oocyte donation cycles. Fertil Steril 86:1376–1385

    PubMed  CAS  Google Scholar 

  48. Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Ciampaglia W, Filicori M (2010) “Physiologic ICSI”: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril 93:598–604

    PubMed  Google Scholar 

  49. Urner F, Sakkas D (1999) Characterization of glycolysis and pentose phosphate pathway activity during sperm entry into the mouse oocyte. Biol Reprod 60:973–978

    PubMed  CAS  Google Scholar 

  50. Comizzoli P, Urner F, Sakkas D, Renard JP (2003) Up-regulation of glucose metabolism during male pronucleus formation determines the early onset of the s phase in bovine zygotes. Biol Reprod 68:1934–1940

    PubMed  CAS  Google Scholar 

  51. Bartoov B, Berkovitz A, Eltes F (2001) Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med 345:1067–1068

    PubMed  CAS  Google Scholar 

  52. De Vos A, Van De Velde H, Joris H, Verheyen G, Devroey P, Van Steirteghem A (2003) Influence of individual sperm morphology on fertilization, embryo morphology, and pregnancy outcome of intracytoplasmic sperm injection. Fertil Steril 79:42–48

    PubMed  Google Scholar 

  53. Berkovitz A, Eltes F, Ellenbogen A, Peer S, Feldberg D, Bartoov B (2006) Does the presence of nuclear vacuoles in human sperm selected for ICSI affect pregnancy outcome? Hum Reprod 21:1787–1790

    PubMed  Google Scholar 

  54. Antinori M, Licata E, Dani G, Cerusico F, Versaci C, d’Angelo D, Antinori S (2008) Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial. Reprod Biomed Online 16:835–841

    PubMed  Google Scholar 

  55. Vanderzwalmen P, Hiemer A, Rubner P, Bach M, Neyer A, Stecher A, Uher P, Zintz M, Lejeune B, Vanderzwalmen S, Cassuto G, Zech NH (2008) Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod Biomed Online 17:617–627

    PubMed  Google Scholar 

  56. Telford NA, Watson AJ, Schultz GA (1990) Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 26:90–100

    PubMed  CAS  Google Scholar 

  57. Oliveira JB, Massaro FC, Baruffi RL, Mauri AL, Petersen CG, Silva LF, Vagnini LD, Franco JG Jr (2010) Correlation between semen analysis by motile sperm organelle morphology examination and sperm DNA damage. Fertil Steril 94:1937–1940

    PubMed  CAS  Google Scholar 

  58. Betteridge KJ, Rieger D (1993) Embryo transfer and related techniques in domestic animals, and their implications for human medicine. Hum Reprod 8:147–167

    PubMed  CAS  Google Scholar 

  59. Bronson FH (2009) Climate change and seasonal reproduction in mammals. Philos Trans R Soc Lond B Biol Sci 364:3331–3340

    PubMed  CAS  Google Scholar 

  60. Lam DA, Miron JA (1994) Global patterns of seasonal variation in human fertility. Ann N Y Acad Sci 709:9–28

    PubMed  CAS  Google Scholar 

  61. Rojansky N, Brzezinski A, Schenker JG (1992) Seasonality in human reproduction: an update. Hum Reprod 7:735–745

    PubMed  CAS  Google Scholar 

  62. Smits LJ, Zielhuis GA, Jongbloet PH, Straatman H (1998) Seasonal variation in human fecundability. Hum Reprod 13:3520–3524

    PubMed  CAS  Google Scholar 

  63. Stolwijk AM, Reuvers MJ, Hamilton CJ, Jongbloet PH, Hollanders JM, Zielhuis GA (1994) Seasonality in the results of in-vitro fertilization. Hum Reprod 9:2300–2305

    PubMed  CAS  Google Scholar 

  64. Rojansky N, Benshushan A, Meirsdorf S, Lewin A, Laufer N, Safran A (2000) Seasonal variability in fertilization and embryo quality rates in women undergoing IVF. Fertil Steril 74:476–481

    PubMed  CAS  Google Scholar 

  65. Weigert M, Feichtinger W, Kulin S, Kaali SG, Dorau P, Bauer P (2001) Seasonal influences on in vitro fertilization and embryo transfer. J Assist Reprod Genet 18:598–602

    PubMed  CAS  Google Scholar 

  66. Vahidi A, Kalantar SM, Soleiman M, Hossein M, Arjmand A, Aflatoonian A, Karimzadeh MA, Kermaninejhad A (2004) The relationship between seasonal variability and pregnancy rates in women undergoing assisted reproductive technique. IJRM 2:82–86

    Google Scholar 

  67. Chang SY, Lan KC, Chen CW, Huang FJ, Tsai MY, Chang CY (2005) The influences of weather on patients with different ovarian responses in the treatment of assisted reproductive technology. J Assist Reprod Genet 22:191–198

    PubMed  Google Scholar 

  68. Wood S, Quinn A, Troupe S, Kingsland C, Lewis-Jones I (2006) Seasonal variation in assisted conception cycles and the influence of photoperiodism on outcome in in vitro fertilization cycles. Hum Fertil (Camb) 9:223–229

    Google Scholar 

  69. Fleming C, Nice L, Hughes AO, Hull MG (1994) Apparent lack of seasonal variation in implantation rates after in-vitro fertilization. Hum Reprod 9:2164–2166

    PubMed  CAS  Google Scholar 

  70. Saltz-Greco SM, Schinfeld J, Somkuti S, Smith S, Barmat L (2004) Seasonality of spontaneous and IVF pregnancy rates, and temperature/humidity effect on IVF. Fertil Steril 82(Suppl 2):S195 (Abstract P-174)

    Google Scholar 

  71. Revelli A, La Sala GB, Gennarelli G, Scatigna L, Racca C, Massobrio M (2005) Seasonality and human in vitro fertilization outcome. Gynecol Endocrinol 21:12–17

    PubMed  Google Scholar 

  72. Wunder DM, Limoni C, Birkhauser MH (2005) Lack of seasonal variations in fertilization, pregnancy and implantation rates in women undergoing IVF. Hum Reprod 20:3122–3129

    PubMed  CAS  Google Scholar 

  73. Fuquay JW (1981) Heat stress as it affects animal production. J Anim Sci 52:164–174

    PubMed  CAS  Google Scholar 

  74. Hansen PJ, Arechiga CF (1999) Strategies for managing reproduction in the heat-stressed dairy cow. J Anim Sci 77(Suppl 2):36–50

    PubMed  CAS  Google Scholar 

  75. Jordan ER (2003) Effects of heat stress on reproduction. J Dairy Sci 86(E. Suppl):E104–E114

    Google Scholar 

  76. Hansen PJ (2009) Effects of heat stress on mammalian reproduction. Philos Trans R Soc Lond B Biol Sci 364:3341–3350

    PubMed  Google Scholar 

  77. Al-Katanani YM, Paula-Lopes FF, Hansen PJ (2002) Effect of season and exposure to heat stress on oocyte competence in Holstein cows. J Dairy Sci 85:390–396

    PubMed  CAS  Google Scholar 

  78. Gendelman M, Aroyo A, Yavin S, Roth Z (2010) Seasonal effects on gene expression, cleavage timing, and developmental competence of bovine preimplantation embryos. Reproduction 140:73–82

    PubMed  CAS  Google Scholar 

  79. Zeron Y, Ocheretny A, Kedar O, Borochov A, Sklan D, Arav A (2001) Seasonal changes in bovine fertility: relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles. Reproduction 121:447–454

    PubMed  CAS  Google Scholar 

  80. Putney DJ, Mullins S, Thatcher WW, Drost M, Gross TS (1989) Embryonic development in superovulated dairy cattle exposed to elevated ambient temperatures between the onset of estrus and insemination. Anim Reprod Sci 19:37–51

    Google Scholar 

  81. Rocha A, Randel RD, Broussard JR, Lim JM, Blair RM, Roussel JD, Godke RA, Hansel W (1998) High environmental temperature and humidity decrease oocyte quality in Bos ­taurus but not in Bos indicus cows. Theriogenology 49:657–665

    PubMed  CAS  Google Scholar 

  82. Roth Z, Hansen PJ (2004) Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biol Reprod 71:1898–1906

    PubMed  CAS  Google Scholar 

  83. Edwards JL, Saxton AM, Lawrence JL, Payton RR, Dunlap JR (2005) Exposure to a physiologically relevant elevated temperature hastens in vitro maturation in bovine oocytes. J Dairy Sci 88:4326–4333

    PubMed  CAS  Google Scholar 

  84. Wang JZ, Sui HS, Miao DQ, Liu N, Zhou P, Ge L, Tan JH (2009) Effects of heat stress during in vitro maturation on cytoplasmic versus nuclear components of mouse oocytes. Reproduction 137:181–189

    PubMed  CAS  Google Scholar 

  85. Ju JC, Jiang S, Tseng JK, Parks JE, Yang X (2005) Heat shock reduces developmental competence and alters spindle configuration of bovine oocytes. Theriogenology 64:1677–1689

    PubMed  Google Scholar 

  86. Ju JC, Tseng JK (2004) Nuclear and cytoskeletal alterations of in vitro matured porcine oocytes under hyperthermia. Mol Reprod Dev 68:125–133

    PubMed  CAS  Google Scholar 

  87. Ulberg LC, Burfening PJ (1967) Embryo death resulting from adverse environment on spermatozoa or ova. J Anim Sci 26:571–577

    PubMed  CAS  Google Scholar 

  88. Setchell BP (1998) The Parkes Lecture. Heat and the testis. J Reprod Fertil 114:179–194

    PubMed  CAS  Google Scholar 

  89. Thonneau P, Bujan L, Multigner L, Mieusset R (1998) Occupational heat exposure and male fertility: a review. Hum Reprod 13:2122–2125

    PubMed  CAS  Google Scholar 

  90. Paul C, Melton DW, Saunders PT (2008) Do heat stress and deficits in DNA repair pathways have a negative impact on male fertility? Mol Hum Reprod 14:1–8

    PubMed  CAS  Google Scholar 

  91. Ossenbuhn S (1998) Exogenous influences on human fertility: fluctuations in sperm parameters and results of in-vitro fertilization coincide with conceptions in the normal population. Hum Reprod 13:2165–2171

    PubMed  CAS  Google Scholar 

  92. Chen Z, Toth T, Godfrey-Bailey L, Mercedat N, Schiff I, Hauser R (2003) Seasonal variation and age-related changes in human semen parameters. J Androl 24:226–231

    PubMed  Google Scholar 

  93. Burfening PJ, Elliott DS, Eisen EJ, Ulberg LC (1970) Survival of embryos resulting from spermatozoa produced by mice exposed to elevated ambient temperature. J Anim Sci 30:578–582

    Google Scholar 

  94. Zhu BK, Setchell BP (2004) Effects of paternal heat stress on the in vivo development of preimplantation embryos in the mouse. Reprod Nutr Dev 44:617–629

    PubMed  Google Scholar 

  95. Paul C, Murray AA, Spears N, Saunders PT (2008) A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction 136:73–84

    PubMed  CAS  Google Scholar 

  96. Burfening PJ, Ulberg LC (1968) Embryonic survival subsequent to culture of rabbit spermatozoa at 38° and 40°C. J Reprod Fertil 15:87–92

    PubMed  CAS  Google Scholar 

  97. Cozzi J, Monier-Gavelle F, Lievre N, Bomsel M, Wolf JP (2001) Mouse offspring after microinjection of heated spermatozoa. Biol Reprod 65:1518–1521

    PubMed  CAS  Google Scholar 

  98. Sailer BL, Sarkar LJ, Bjordahl JA, Jost LK, Evenson DP (1997) Effects of heat stress on mouse testicular cells and sperm chromatin structure. J Androl 18:294–301

    PubMed  CAS  Google Scholar 

  99. Love CC, Kenney RM (1999) Scrotal heat stress induces altered sperm chromatin structure associated with a decrease in protamine disulfide bonding in the stallion. Biol Reprod 60:615–620

    PubMed  CAS  Google Scholar 

  100. Perez-Crespo M, Pintado B, Gutierrez-Adan A (2008) Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol Reprod Dev 75:40–47

    PubMed  CAS  Google Scholar 

  101. Ax RL, Gilbert GR, Shook GE (1987) Sperm in poor quality semen from bulls during heat stress have a lower affinity for binding hydrogen-3 heparin. J Dairy Sci 70:195–200

    PubMed  CAS  Google Scholar 

  102. Bedford JM, Yanagimachi R (1991) Epididymal storage at abdominal temperature reduces the time required for capacitation of hamster spermatozoa. J Reprod Fertil 91:403–410

    PubMed  CAS  Google Scholar 

  103. Murase T, Imaeda N, Yamada H, Miyazawa K (2007) Seasonal changes in semen characteristics, composition of seminal plasma and ­frequency of acrosome reaction induced by calcium and calcium ionophore A23187 in Large White boars. J Reprod Dev 53:853–865

    PubMed  CAS  Google Scholar 

  104. Bernstein JA, Alexis N, Barnes C, Bernstein IL, Nel A, Peden D, Diaz-Sanchez D, Tarlo SM, Williams PB (2004) Health effects of air pollution. J Allergy Clin Immunol 114:1116–1123

    PubMed  Google Scholar 

  105. Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    PubMed  CAS  Google Scholar 

  106. Dejmek J, Solansk I, Beneö I, Lenicek J, Sram RJ (2001) Air pollution and pregnancy outcome. In: Sram RJ (ed) Teplice program: impact of air pollution on human health. Academia, Prague, pp 127–144

    Google Scholar 

  107. Maroziene L, Grazuleviciene R (2002) Maternal exposure to low-level air pollution and pregnancy outcomes: a population-based study. Environ Health 1:6

    PubMed  Google Scholar 

  108. Sram RJ, Binkova B, Dejmek J, Bobak M (2005) Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect 113:375–382

    PubMed  CAS  Google Scholar 

  109. Ritz B, Wilhelm M, Hoggatt KJ, Ghosh JK (2007) Ambient air pollution and preterm birth in the environment and pregnancy ­outcomes study at the University of California, Los Angeles. Am J Epidemiol 166:1045–1052

    PubMed  Google Scholar 

  110. Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C (2008) A cohort study of traffic-related air pollution impacts on birth outcomes. Environ Health Perspect 116:680–686

    PubMed  Google Scholar 

  111. Green RS, Malig B, Windham GC, Fenster L, Ostro B, Swan S (2009) Residential exposure to traffic and spontaneous abortion. Environ Health Perspect 117:1939–1944

    PubMed  CAS  Google Scholar 

  112. Bernstein JA, Alexis N, Bacchus H, Bernstein IL, Fritz P, Horner E, Li N, Mason S, Nel A, Oullette J, Reijula K, Reponen T, Seltzer J, Smith A, Tarlo SM (2008) The health effects of non-industrial indoor air pollution. J Allergy Clin Immunol 121:585–591

    PubMed  CAS  Google Scholar 

  113. Hall J, Gilligan A, Schimmel T, Cecchi M, Cohen J (1998) The origin, effects and control of air pollution in laboratories used for human embryo culture. Hum Reprod 13(Suppl 4):146–155

    PubMed  Google Scholar 

  114. Cohen J, Gilligan A, Esposito W, Schimmel T, Dale B (1997) Ambient air and its potential effects on conception in vitro. Hum Reprod 12:1742–1749

    PubMed  CAS  Google Scholar 

  115. Forman M, Polanski V, Horvath P, Gilligan A, Rieger D (2004) Reductions in volatile organic compounds, aldehydes, and particulate air contaminants in an IVF laboratory by centralized and stand-alone air filtration systems. Fertil Steril 82(Suppl 2):S324 (Abstract P-535)

    Google Scholar 

  116. Merton JS, Vermeulen ZL, Otter T, Mullaart E, de Ruigh L, Hasler JF (2007) Carbon-activated gas filtration during in vitro culture increased pregnancy rate following transfer of in vitro-produced bovine embryos. Theriog­enology 67:1233–1238

    PubMed  CAS  Google Scholar 

  117. Racowsky C, Jackson KV, Nurredin A, Balint C, Shen S, de los Santos MJ, Kely JR, Pan Y (1999) Carbon-activated air filtration results in reduced spontaneous abortion rates following IVF. In: Proceedings of the 11th world congress on in-vitro fertilization and human reproductive genetics, pp O–059 (Abstract), Sydney, Australia.

    Google Scholar 

  118. Younis A, Carnovale D, Butler W (2009) Improvement in IVF outcome after change of CO2 supplies to incubators. Fertil Steril 92(Suppl):S155 (Abstract P-241)

    Google Scholar 

  119. Perin PM, Maluf M, Czeresnia CE, Nicolosi Foltran Januario DA, Nascimento Saldiva PH (2010) Effects of exposure to high levels of particulate air pollution during the follicular phase of the conception cycle on pregnancy outcome in couples undergoing in vitro fertilization and embryo transfer. Fertil Steril 93:301–303

    PubMed  Google Scholar 

  120. Legro RS, Sauer MV, Mottla GL, Richter KS, Li X, Dodson WC, Liao D (2010) Effect of air quality on assisted human reproduction. Hum Reprod 25:1317–1324

    PubMed  Google Scholar 

  121. Perin PM, Maluf M, Czeresnia CE, Januario DA, Saldiva PH (2010) Impact of short-term preconceptional exposure to particulate air pollution on treatment outcome in couples undergoing in vitro fertilization and embryo transfer (IVF/ET). J Assist Reprod Genet 27:371–382

    PubMed  Google Scholar 

  122. Veras MM, Damaceno-Rodrigues NR, Caldini EG, Maciel Ribeiro AA, Mayhew TM, Saldiva PH, Dolhnikoff M (2008) Particulate urban air pollution affects the functional morphology of mouse placenta. Biol Reprod 79:578–584

    PubMed  CAS  Google Scholar 

  123. Maluf M, Perin PM, Foltran Januario DA, Nascimento Saldiva PH (2009) In vitro fertilization, embryo development, and cell lineage segregation after pre- and/or postnatal exposure of female mice to ambient fine particulate matter. Fertil Steril 92:1725–1735

    PubMed  Google Scholar 

  124. Boggia B, Carbone U, Farinaro E, Zarrilli S, Lombardi G, Colao A, De Rosa N, De Rosa M (2009) Effects of working posture and exposure to traffic pollutants on sperm quality. J Endocrinol Invest 32:430–434

    PubMed  CAS  Google Scholar 

  125. De Rosa M, Zarrilli S, Paesano L, Carbone U, Boggia B, Petretta M, Maisto A, Cimmino F, Puca G, Colao A, Lombardi G (2003) Traffic pollutants affect fertility in men. Hum Reprod 18:1055–1061

    PubMed  Google Scholar 

  126. Hansen C, Luben TJ, Sacks JD, Olshan A, Jeffay S, Strader L, Perreault SD (2010) The effect of ambient air pollution on sperm quality. Environ Health Perspect 118:203–209

    PubMed  CAS  Google Scholar 

  127. Rubes J, Rybar R, Prinosilova P, Veznik Z, Chvatalova I, Solansky I, Sram RJ (2010) Genetic polymorphisms influence the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res 683:9–15

    PubMed  CAS  Google Scholar 

  128. Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, Robbins WA, Perreault SD (2005) Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 20:2776–2783

    PubMed  CAS  Google Scholar 

  129. Rubes J, Selevan SG, Sram RJ, Evenson DP, Perreault SD (2007) GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res 625:20–28

    PubMed  CAS  Google Scholar 

  130. Waylen AL, Metwally M, Jones GL, Wilkinson AJ, Ledger WL (2009) Effects of cigarette smoking upon clinical outcomes of assisted reproduction: a meta-analysis. Hum Reprod Update 15:31–44

    PubMed  CAS  Google Scholar 

  131. Lichtenfels AJ, Gomes JB, Pieri PC, El Khouri Miraglia SG, Hallak J, Saldiva PH (2007) Increased levels of air pollution and a decrease in the human and mouse male-to-female ratio in Sao Paulo, Brazil. Fertil Steril 87:230–232

    PubMed  Google Scholar 

Download references

Acknowledgments

My thanks to Dr. T.B. Pool (Fertility Center of San Antonio) for the many entertaining, stimulating, and enlightening discussions of human ART that led to this paper. Thanks also to Dr. Paulo Perin (CEER—Specialized Center for Human Reproduction, Sao Paulo) for bringing Lichtenfels et al. (131) to my attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don Rieger .

Editor information

Editors and Affiliations

Additional information

Dedication

This paper is dedicated to Keith James Betteridge, BVSc, MVSc, PhD, FRCVS, Professor Emeritus, University of Guelph. For 30 years, Keith has been a wonderful supervisor, colleague, mentor, and friend. I am indebted to him for his countless contributions to my professional and personal life. I have benefitted enormously from his extraordinary knowledge of, and passion for, embryo biology, history of the science, and the proper use of the English language. Overarching all of this is his feeling for the mystery and beauty of embryo development.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rieger, D. (2012). Culture Systems: Physiological and Environmental Factors That Can Affect the Outcome of Human ART. In: Smith, G., Swain, J., Pool, T. (eds) Embryo Culture. Methods in Molecular Biology, vol 912. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-971-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-971-6_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-970-9

  • Online ISBN: 978-1-61779-971-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics