Skip to main content

The Use of Peptide Nucleic Acids in Surface Plasmon Resonance for Detection of Red Tide Algae

  • Protocol
  • First Online:
Molecular Biological Technologies for Ocean Sensing

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 704 Accesses

Abstract

There is a need for low-cost, rapid, and accurate detection of harmful organisms. Some species of the marine dinoflagellate Alexandrium produce paralytic shellfish toxins that can accumulate in shellfish tissue and can cause paralysis and death if ingested by humans. We have developed a method for RNA detection of Alexandrium using a portable surface plasmon resonance biosensing instrument and peptide nucleic acid probes. Because our method is user-friendly, cost-effective, and yields quick results, it will greatly improve the abilities of monitoring programs to detect harmful species and take appropriate measures to prevent detrimental human health effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shumway S, Sherman-Caswell S, Hurst J (1988) Paralytic shellfish poisoning in Maine: monitoring monster. J Shellfish Res 7:643–652

    Google Scholar 

  2. Anderson D (1997) Bloom dynamics of toxic Alexandrium species in the northeastern U.S. Limnol Oceanogr 42(5/2):1009–1022

    Article  Google Scholar 

  3. Hurst JW (1975) Proceedings of the first international conference on toxic dinoflagellate blooms. In: LoCicero VR (ed) Massachusetts Science and Technology Foundation, Wakefield, MA, pp 525–528

    Google Scholar 

  4. Armstrong IH, Coulson JC, Hawkey P, Hudson MJ (1978) Further mass seabird deaths from paralytic shellfish poisoning. Br Birds 71:58–68

    Google Scholar 

  5. Campbell RC, Teegarden GJ, Cembella AD, Durbin EG (2005) Zooplankton grazing impacts on Alexandrium spp. in the nearshore environment of the Gulf of Maine. Deep-Sea Res Pt II 52(19–21):2817–2833

    Google Scholar 

  6. Geraci J, Anderson D, Timperi R, St Aubin D, Early G, Prescott J, Mayo C (1989) Humpback whales (Megaptera novaeangliae) fatally poisoned by dinoflagellate toxin. Can J Fish Aquatic Sci 46:1895–1898

    Article  Google Scholar 

  7. Guzman HM, Cortes J, Glynn PW, Richmond RH (1990) Coral mortality associated with dinoflagellate blooms in the eastern Pacific (Costa Rica and Panama). Mar Ecol 60:299–303

    Article  Google Scholar 

  8. McGillicuddy D, Anderson D, Lynch D, Townsend D (2005) Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: results from a physical-biological model. Deep-Sea Res Pt II 52(19–21):2698–2714

    Google Scholar 

  9. Hallegraeff GM (2003) Harmful algal blooms: a global overview. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. UNESCO, Paris, pp 25–49

    Google Scholar 

  10. Nielsen P, Egholm M, Buchardt O (1994) Peptide nucleic acid (PNA). A DNA Mimic with a Peptide Backbone. Bioconjugate Chem 5:3–7

    Article  CAS  Google Scholar 

  11. Kretschmann E (1971) Determination of optical constants of metals by excitation of surface plasmons. Z Phys 241(4):313–324

    Article  CAS  Google Scholar 

  12. Hu C, Gana N, Chenc Y, Bic L, Zhangc X, Songa L (2009) Detection of microcystins in environmental samples using surface plasmon resonance biosensor. Talanta 80:407–410

    Article  PubMed  CAS  Google Scholar 

  13. Soelberg SD, Stevens RC, Limaye AP, Furlong CE (2009) Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification. Anal Chem 81:2357–2363

    Article  PubMed  CAS  Google Scholar 

  14. Christensen LLH (1997) Theoretical analysis of protein concentration determination using biosensor technology under conditions of partial mass transport limitation. Anal Biochem 249:153–164

    Article  PubMed  CAS  Google Scholar 

  15. Richalet-Secordel PM, Rauffer-Bruyere N, Christensen LL, Ofenloch-Haehnle B, Seidel C, van Regenmortel MH (1997) Concentration measurement of unpurified proteins using biosensor technology under conditions of partial mass transport limitations. Anal Biochem 249: 165–173

    Article  PubMed  CAS  Google Scholar 

  16. Markgren P-O, Hämäläinen M, Danielson U (1999) Screening of compounds interacting with HIV-1 proteinase using optical biosensor technology. Anal Biochem 265:340–350

    Article  Google Scholar 

  17. Strandh M, Persson B, Roos H, Ohlson S (1998) Studies of interactions with weak affinities and low-molecular-weight compounds using surface plasmon resonance technology. J Mol Recognit 11:188–190

    Article  PubMed  CAS  Google Scholar 

  18. Asai R, Ootani K, Nomura Y, Nakamura C, Ikebukuro K, Arikawa Y, Miyake J, Karube I (2003) PCR-based ribosomal DNA detection technique for Microalga (Heterosigma carterae) causing red tide and its application to a biosensor using labeled probe. Mar Biotechnol 5:417–423

    Article  PubMed  CAS  Google Scholar 

  19. Joung H, Lee N, Lee SK, Ahn J, Shin YB, Choi H, Lee C, Kim S, Kim M (2008) High sensitivity detection of 16 s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Anal Chim Acta 630: 168–173

    Article  PubMed  CAS  Google Scholar 

  20. Persson B, Stenhag K, Nilsson P, Larsson A, Uhlen M, Nygren P (1997) Analysis of oligonucleotide probe affinities using surface plasmon resonance: a means for mutational scanning. Anal Biochem 246:34–44

    Article  PubMed  CAS  Google Scholar 

  21. Anderson D, Kulis D, Keafer B, Gribble K, Marin R, Scholin C (2005) Identification and enumeration of Alexandrium spp. from the Gulf of Maine using molecular probes. Deep-Sea Res Pt II 52(19–21):2467–2490

    Google Scholar 

  22. Hosoi-Tanabe S, Sako Y (2005) Rapid detection of natural cells of Alexandrium tamarense and A. catenella (Dinophyceae) by fluorescence in situ hybridization. Harmful Algae 4(2):319–328

    Article  Google Scholar 

  23. Dyhrman ST, Erdner D, Du JL, Galac M, Anderson DM (2006) Molecular quantification of toxic Alexandrium fundyense in the Gulf of Maine using real-time PCR. Harmful Algae 5(3):242–250

    Article  CAS  Google Scholar 

  24. Handy SM, Demir E, Hutchins DA, Portune KJ, Whereat EB, Hare CE, Rose JM, Warner M, Farestad M, Cary SC, Coyne KJ (2008) Using quantitative real-time PCR to study competition and community dynamics among Delaware Inland Bays harmful algae in field and laboratory studies. Harmful Algae 7(5):599–613

    Article  CAS  Google Scholar 

  25. Bowers HA, Tomas C, Tengs T, Kempton JW, Lewitus AJ, Oldach DW (2006) Raphidophyceae (Chadefaud Ex Silva) systematics and rapid identification: sequence analyses and real-time PCR assays. J Phycol 42(6): 1333–1348

    Article  PubMed  CAS  Google Scholar 

  26. Chinowsky TM, Soelberg SD, Baker P, Swanson NR, Kauffman P, Mactutis A, Grow MS, Atmar R, Yee SS, Furlong CE (2007) Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosens Bioelectron 22(9–10):2268–2275

    Article  PubMed  CAS  Google Scholar 

  27. Naimushin AN, Spinelli CB, Soelberg SD, Mann T, Chinowsky T, Kauffman P, Yee S, Furlong CE (2005) Airborne analyte detection with an aircraft-adapted surface plasmon resonance sensor system. Sens Actuators B 104:237–248

    Article  Google Scholar 

  28. Naimushin AN, Soelberg SD, Bartholomew DU, Elkind JL, Furlong CE (2003) A portable surface plasmon resonance (SPR) sensor system with temperature regulation. Sens Actuators B 96:253–260

    Article  Google Scholar 

  29. Stevens RC, Soelberg SD, Eberhart BTL, Spencer S, Wekell JC, Chinowsky TM, Trainer VL, Furlong CE (2007) Detection of the toxin domoic acid from clam extracts using a portable surface plasmon resonance biosensor. Harmful Algae 6:166–174

    Article  CAS  Google Scholar 

  30. Jensen K, Orum H, Nielson P, Norden B (1997) Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36:5072–5077

    Article  PubMed  CAS  Google Scholar 

  31. Nielsen PE, Egholm M, Berg R, Buchardt O (1991) Sequence selective recognition of DNA by strand displacement with a thymine substituted polyamide. Science 254:1497–1500

    Article  PubMed  CAS  Google Scholar 

  32. Scholin C, Herzog M, Sogin M, Anderson D (1994) Identification of group-and strain specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA Gene. J Phycol 30(6):999–1011

    Article  CAS  Google Scholar 

  33. John U, Cembella A, Hummert C, Elbrachter M, Groben R, Medlin L (2003) Discrimination of the toxigenic dinoflagellates Alexandrium tamarense and A. ostenfeldii in co-occurring natural populations from Scottish coastal waters. Eur J Phycol 38(1):25–40

    Article  Google Scholar 

  34. Goffredi SK, Jones WJ, Scholin CA, Marin R III, Vrijenhoek RC (2006) Molecular detection of marine invertebrate larvae. Marine Biotechnol 8:149–160

    Article  CAS  Google Scholar 

  35. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4): 1103–1169

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Partial funding for this research was provided by NOAA MERHAB award NA05NOS4781232. This is Monitoring and Event Response for Harmful Algal Blooms (MERHAB) Publication Number 140 (L.C.). Partial funding support was also provided by the University of Maine’s Graduate Student Government Grants-in-Aid of Research, NSF-IGERT, and the Phycological Society of America Grants-in-Aid of Research (A.R.B.). The authors would like to thank Clem Furlong and Scott Soelberg of Seattle Sensor Systems, P. Millard, J. Duy, R. Smith, and Chris Scholin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber R. Bratcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bratcher, A.R., Connell, L.B. (2012). The Use of Peptide Nucleic Acids in Surface Plasmon Resonance for Detection of Red Tide Algae. In: Tiquia-Arashiro, S. (eds) Molecular Biological Technologies for Ocean Sensing. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-915-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-915-0_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-914-3

  • Online ISBN: 978-1-61779-915-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics