Skip to main content

Targeted Microinjection of Synthetic mRNAs to Alter Retina Gene Expression in Xenopus Embryos

  • Protocol
  • First Online:
Book cover Retinal Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 884))

Abstract

The individual cells of the Xenopus cleavage-stage embryo have been fate mapped, revealing which of these cells contribute to the retina. Using this retina fate map, one can specifically modulate levels of gene expression in retina lineages to determine the function of proteins in various aspects of early retinal development, such as formation of the eye fields and determination of specific cell fates. This chapter presents the techniques for identifying specific retina blastomere precursor cells, and injecting them with lineage tracers, mRNAs encoding wild-type and mutant constructs or morpholino antisense oligonucleotides to alter gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dale L, Slack JMW (1987) Fate map of the 32-cell stage of Xenopus laevis. Development 100:279–295

    PubMed  CAS  Google Scholar 

  2. Moody SA (1987) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev Biol 119:560–578

    Article  PubMed  CAS  Google Scholar 

  3. Moody SA (1987) Fates of the blastomeres of the 32-cell stage Xenopus embryo. Dev Biol 122:300–319

    Article  PubMed  CAS  Google Scholar 

  4. Moody SA, Kline MJ (1990) Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Anat Embryol 182:347–362

    Article  PubMed  CAS  Google Scholar 

  5. Moody SA (1989) Quantitative lineage analysis of the origin of frog primary motor and sensory neurons from cleavage stage blastomeres. J Neurosci 9:2919–2930

    PubMed  CAS  Google Scholar 

  6. Huang S, Moody SA (1992) Does lineage determine the dopamine phenotype in the tadpole hypothalamus: a quantitative analysis. J Neurosci 12:1351–1362

    PubMed  CAS  Google Scholar 

  7. Huang S, Moody SA (1993) The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones. J Neurosci 13:3193–3210

    PubMed  CAS  Google Scholar 

  8. Kenyon KL, Zaghloul N, Moody SA (2001) Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate. Dev Biol 240:77–91

    Article  PubMed  CAS  Google Scholar 

  9. Huang S, Moody SA (1995) Asymmetrical blastomere origin and spatial domains of dopamine and Neuropeptide Y amacrine cells in Xenopus tadpole retina. J Comp Neurol 360:2–13

    Google Scholar 

  10. Huang S, Moody SA (1997) Three types of serotonin-containing amacrine cells in the tadpole retina have distinct clonal origins. J Comp Neurol 387:42–52

    Article  PubMed  CAS  Google Scholar 

  11. Moore KB, Moody SA (1999) Animal-vegetal asymmetries influence the earliest steps in retinal fate commitment in Xenopus. Dev Biol 212:25–41

    Article  PubMed  CAS  Google Scholar 

  12. Guthrie S, Turin L, Warner AE (1988) Patterns of junctional communication during development of the early amphibian embryo. Development 103:769–783

    PubMed  CAS  Google Scholar 

  13. Weisblat DA, Sawyer RT, Stent GS (1978) Cell lineage analysis by intracellular injection of a tracer enzyme. Science 202:1295–1298

    Article  PubMed  CAS  Google Scholar 

  14. Jacobson M (1985) Clonal analysis and cell lineages of the vertebrate nervous system. Annu Rev Neurosci 8:71–102

    Article  PubMed  CAS  Google Scholar 

  15. Stent GS, Weisblat DA (1985) Cell lineage in the development of invertebrate nervous systems. Annu Rev Neurosci 8:45–70

    Article  PubMed  CAS  Google Scholar 

  16. Gimlich RL, Braun J (1985) Improved fluorescent compounds for tracing cell lineage. Dev Biol 109:509–514

    Article  PubMed  CAS  Google Scholar 

  17. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  18. Sive HL, Grainger RM, Harland RM (2000) Early development of Xenopus laevis. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  19. Vincent J-P, Gerhart JC (1987) Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev Biol 123:526–539

    Article  PubMed  CAS  Google Scholar 

  20. Klein SL (1987) The first cleavage furrow demarcates the dorsal–ventral axis in Xenopus embryos. Dev Biol 120:299–304

    Article  PubMed  CAS  Google Scholar 

  21. Masho R (1990) Close correlation between the first cleavage plane and the body axis in early Xenopus embryos. Dev Growth Differ 32:57–64

    Article  Google Scholar 

  22. Hainski AM, Moody SA (1992) Xenopus maternal RNAs from a dorsal animal blastomere induce a secondary axis in host embryos. Development 116:347–355

    PubMed  CAS  Google Scholar 

  23. Peng HB (1991) Appendix A: solutions and protocols. Methods Cell Biol 36:657–662

    Article  PubMed  CAS  Google Scholar 

  24. Nakamura O, Kishiyama K (1971) Prospective fates of blastomeres at the 32-cell stage of Xenopus laevis embryos. Proc Jpn Acad 47:407–412

    Google Scholar 

  25. Hirose G, Jacobson M (1979) Clonal organization of the central nervous system of the frog. I. Clones stemming from individual blastomeres of the 16-cell and earlier stages. Dev Biol 71:191–202

    Article  PubMed  CAS  Google Scholar 

  26. Jacobson M, Hirose G (1981) Clonal organization of the central nervous system of the frog. II. Clones stemming from individual blastomeres of the 32- and 64-cell stages. J Neurosci 1:271–284

    PubMed  CAS  Google Scholar 

  27. Sullivan SA, Moore KB, Moody SA (1999) Early events in blastomere fate determination. In: Moody SA (ed) Cell lineage and cell fate determination. Academic, New York, pp 297–321

    Chapter  Google Scholar 

  28. Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). Elsevier-North Holland Publishing Co., Amsterdam

    Google Scholar 

Download references

Acknowledgement

This work was supported by NSF grant IOS-0817902.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally A. Moody .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moody, S.A. (2012). Targeted Microinjection of Synthetic mRNAs to Alter Retina Gene Expression in Xenopus Embryos. In: Wang, SZ. (eds) Retinal Development. Methods in Molecular Biology, vol 884. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-848-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-848-1_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-847-4

  • Online ISBN: 978-1-61779-848-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics