Skip to main content

Generation of Transgenic Xenopus Using Restriction Enzyme-Mediated Integration

  • Protocol
  • First Online:
Retinal Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 884))

Abstract

Transgenesis, the process of incorporating an exogenous gene (transgene) into an organism’s genome, is a widely used tool to develop models of human diseases and to study the function and/or regulation of genes. Generating transgenic Xenopus is rapid and involves simple in vitro manipulations, taking advantage of the large size of the amphibian egg and external embryonic development. Restriction enzyme-mediated integration (REMI) has a number of advantages for transgenesis compared to other methods used to produce transgenic Xenopus, including relative efficiency, higher transgene expression levels, fewer genetic chimera in founder transgenic animals, and near-complete germ-line transgene transmission. This chapter explains the REMI method for generating transgenic Xenopus laevis tadpoles, including improvements developed to enable studies in the mature retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kay BK, Peng HB (eds) (1991) Xenopus laevis: Practical uses in cell and molecular biology, vol. 36, Academic Press, San Diego

    Google Scholar 

  2. Gurdon J (2009) Nuclear reprogramming in eggs. Nat Med 15:1141–1144

    Article  PubMed  CAS  Google Scholar 

  3. Marsh-Armstrong N, Cai L, Brown DD (2004) Thyroid hormone controls the development of connections between the spinal cord and limbs during Xenopus laevis metamorphosis. Proc Natl Acad Sci USA 101:165–170

    Article  PubMed  CAS  Google Scholar 

  4. Furlow JD, Neff ES (2006) A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis. Trends Endocrinol Metab 17:40–47

    Article  PubMed  Google Scholar 

  5. Besharse JC (1986) Photosensitive membrane turnover: differentiated membrane domains and cell-cell interaction. In: Adler R, Farber DB (eds) The Retina: Part 1: pp. 297–362. Academic Press, New York

    Google Scholar 

  6. Gabriel RE (2000) Special issue: neurobiology of the anuran retina. Microsc Res Tech 50:325–424

    Article  PubMed  CAS  Google Scholar 

  7. Anderson FE, Green CB (2000) Symphony of rhythms in the Xenopus laevis retina. Microsc Res Tech 50:360–372

    Article  PubMed  CAS  Google Scholar 

  8. Hayasaka N, LaRue SI, Green CB (2010) Differential contribution of rod and cone circadian clocks in driving retinal melatonin rhythms in Xenopus. PLoS One 5:e15599

    Article  PubMed  CAS  Google Scholar 

  9. Hayasaka N, LaRue SI, Green CB (2002) In vivo disruption of Xenopus CLOCK in the retinal photoreceptor cells abolishes circadian melatonin rhythmicity without affecting its production levels. J Neurosci 22:1600–1607

    PubMed  CAS  Google Scholar 

  10. Liu X, Green CB (2001) A novel promoter element, photoreceptor conserved element II, directs photoreceptor-specific expression of nocturnin in Xenopus laevis. J Biol Chem 276:15146–15154

    Article  PubMed  CAS  Google Scholar 

  11. Baker SA, Haeri M, Yoo P, Gospe SM 3rd, Skiba NP, Knox BE, Arshavsky VY (2008) The outer segment serves as a default destination for the trafficking of membrane proteins in photoreceptors. J Cell Biol 183:485–498

    Article  PubMed  CAS  Google Scholar 

  12. Calvert PD, Schiesser WE, Pugh EN Jr (2010) Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium. J Gen Physiol 135:173–196

    Article  PubMed  CAS  Google Scholar 

  13. Choi RY, Engbretson GA, Solessio EC, Jones GA, Coughlin A, Aleksic I, Zuber ME (2011) Cone degeneration following rod ablation in a reversible model of retinal degeneration. Invest Ophthalmol Vis Sci 52:364–373

    Article  PubMed  CAS  Google Scholar 

  14. Iakhine R, Chorna-Ornan I, Zars T, Elia N, Cheng Y, Selinger Z, Minke B, Hyde DR (2004) Novel dominant rhodopsin mutation triggers two mechanisms of retinal degeneration and photoreceptor desensitization. J Neurosci 24:2516–2526

    Article  PubMed  CAS  Google Scholar 

  15. Knox BE, Schlueter C, Sanger BM, Green CB, Besharse JC (1998) Transgene expression in Xenopus rods. FEBS Lett 423:117–121

    Article  PubMed  CAS  Google Scholar 

  16. Muradov H, Boyd KK, Haeri M, Kerov V, Knox BE, Artemyev NO (2009) Characterization of human cone phosphodiesterase-6 ectopically expressed in Xenopus laevis rods. J Biol Chem 284:32662–32669

    Article  PubMed  CAS  Google Scholar 

  17. Haeri M, Knox BE (2012) Rhodopsin mutant P23H destabilizes rod photoreceptor diskmembranes. PLoS One 7:e30101?

    Article  PubMed  Google Scholar 

  18. Tam BM, Moritz OL, Hurd LB, Papermaster DS (2000) Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis. J Cell Biol 151:1369–1380

    Article  PubMed  CAS  Google Scholar 

  19. Beck CW, Izpisua Belmonte JC, Christen B (2009) Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 238:1226–1248

    Article  PubMed  CAS  Google Scholar 

  20. Casey ES, Tada M, Fairclough L, Wylie CC, Heasman J, Smith JC (1999) Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development. Development 126:4193–4200

    PubMed  CAS  Google Scholar 

  21. Hyde CE, Old RW (2000) Regulation of the early expression of the Xenopus nodal-related 1 gene, Xnr1. Development 127:1221–1229

    PubMed  CAS  Google Scholar 

  22. Karaulanov E, Knochel W, Niehrs C (2004) Transcriptional regulation of BMP4 synexpression in transgenic Xenopus. EMBO J 23:844–856

    Article  PubMed  CAS  Google Scholar 

  23. Mani SS, Besharse JC, Knox BE (1999) Immediate upstream sequence of arrestin directs rod-specific expression in Xenopus. J Biol Chem 274:15590–15597

    Article  PubMed  CAS  Google Scholar 

  24. Amaya E, Kroll KL (1999) A method for generating transgenic frog embryos. Methods Mol Biol 97:393–414

    PubMed  CAS  Google Scholar 

  25. Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122:3173–3183

    PubMed  CAS  Google Scholar 

  26. Ogino H, McConnell WB, Grainger RM (2006) High-throughput transgenesis in Xenopus using I-SceI meganuclease. Nat Protoc 1:1703–1710

    Article  PubMed  CAS  Google Scholar 

  27. Ogino H, McConnell WB, Grainger RM (2006) Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech Dev 123:103–113

    Article  PubMed  CAS  Google Scholar 

  28. Pan FC, Chen Y, Loeber J, Henningfeld K, Pieler T (2006) I-SceI meganuclease-mediated transgenesis in Xenopus. Dev Dyn 235:247–252

    Article  PubMed  Google Scholar 

  29. Hamlet MR, Yergeau DA, Kuliyev E, Takeda M, Taira M, Kawakami K, Mead PE (2006) Tol2 transposon-mediated transgenesis in Xenopus tropicalis. Genesis 44:438–445

    Article  PubMed  Google Scholar 

  30. Ivics Z, Izsvak Z (2004) Transposable elements for transgenesis and insertional mutagenesis in vertebrates: a contemporary review of experimental strategies. Methods Mol Biol 260:255–276

    PubMed  CAS  Google Scholar 

  31. Sinzelle L, Vallin J, Coen L, Chesneau A, Du Pasquier D, Pollet N, Demeneix B, Mazabraud A (2006) Generation of trangenic Xenopus laevis using the sleeping beauty transposon system. Transgenic Res 15:751–760

    Article  PubMed  CAS  Google Scholar 

  32. Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods 2: 975–979

    Article  PubMed  CAS  Google Scholar 

  33. Allen BG, Weeks DL (2006) Using phiC31 integrase to make transgenic Xenopus laevis embryos. Nat Protoc 1:1248–1257

    Article  PubMed  CAS  Google Scholar 

  34. Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA 97:5995–6000

    Article  PubMed  CAS  Google Scholar 

  35. Chesneau A, Sachs LM, Chai N, Chen Y, Du Pasquier L, Loeber J, Pollet N, Reilly M, Weeks DL, Bronchain OJ (2008) Transgenesis procedures in Xenopus. Biol Cell 100:503–521

    Article  PubMed  CAS  Google Scholar 

  36. Amaya E, Kroll KL (1999) A method for generating transgenic frog embryos. Methods Mol Biol 97:393–414

    PubMed  CAS  Google Scholar 

  37. Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36:581–605

    Article  PubMed  CAS  Google Scholar 

  38. Batni S, Mani SS, Schlueter C, Ji M, Knox BE (2000) Xenopus rod photoreceptor: model for expression of retinal genes. Methods Enzymol 316:50–64

    Article  PubMed  CAS  Google Scholar 

  39. Thode S, Schafer A, Pfeiffer P, Vielmetter W (1990) A novel pathway of DNA end-to-end joining. Cell 60:921–928

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Annabelle Pellerin and Maria Goralski for help in preparation of this manuscript. We acknowledge present and former lab and Center for Vision Research members who have helped develop this procedure over many years. This work was supported by the National Institutes of Health Grants EY-11256 and EY-12975 (B.E.K.), Research to Prevent Blindness (Unrestricted Grant to SUNY UMU Department of Ophthalmology), Fight for Sight (FFS) and Lions of CNY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry E. Knox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Haeri, M., Knox, B.E. (2012). Generation of Transgenic Xenopus Using Restriction Enzyme-Mediated Integration. In: Wang, SZ. (eds) Retinal Development. Methods in Molecular Biology, vol 884. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-848-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-848-1_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-847-4

  • Online ISBN: 978-1-61779-848-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics