Skip to main content

Conditional Control of Gene Expression in the Mouse Retina

  • Protocol
  • First Online:
Retinal Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 884))

Abstract

Conditional knockout is a powerful research tool for specific deletion of target genes, especially for the genes that are widely expressed and developmentally regulated. The development of the retina involves multiple intrinsic and extrinsic factors, many are required for embryonic development or expressed in multiple tissue or cell types. To study their roles in a spatial- or temporal-specific fashion, Cre/loxP-based gene-targeting approach has been utilized successfully. This chapter describes the methodology of conditional knockout approach in studying the development of the retina, using LIM homeobox gene Isl1 as an example. It provides details on targeting vector design and construction, introducing the vector into embryonic stem (ES) cell, screening ES cell for the recombination events, injecting ES cells, and generating chimeric and null mice. It also discusses the current issues in the use of Cre/loxP-based gene-targeting approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    Article  PubMed  CAS  Google Scholar 

  2. Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755

    Article  PubMed  CAS  Google Scholar 

  3. Fukushige S, Sauer B (1992) Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci USA 89:7905–7909

    Article  PubMed  CAS  Google Scholar 

  4. Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486

    Article  PubMed  CAS  Google Scholar 

  5. Ashery-Padan R, Gruss P (2001) Pax6 lights-up the way for eye development. Curr Opin Cell Biol 13:706–714

    Article  PubMed  CAS  Google Scholar 

  6. Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci USA 93:589–595

    Article  PubMed  CAS  Google Scholar 

  7. Beglopoulos V, Shen J (2004) Gene-targeting technologies for the study of neurological disorders. Neuromolecular Med 6:13–30

    Article  PubMed  CAS  Google Scholar 

  8. Pan L, Deng M, Xie X, Gan L (2008) ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development 135:1981–1990

    Article  PubMed  CAS  Google Scholar 

  9. Furuta Y, Lagutin O, Hogan BL, Oliver GC (2000) Retina- and ventral forebrain-specific Cre recombinase activity in transgenic mice. Genesis 26:130–132

    Article  PubMed  CAS  Google Scholar 

  10. Glaser S, Anastassiadis K, Stewart AF (2005) Current issues in mouse genome engineering. Nat Genet 37:1187–1193

    Article  PubMed  CAS  Google Scholar 

  11. Thomas KR, Deng C, Capecchi MR (1992) High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol Cell Biol 12:2919–2923

    PubMed  CAS  Google Scholar 

  12. Hasty P, Rivera-Perez J, Bradley A (1991) The length of homology required for gene targeting in embryonic stem cells. Mol Cell Biol 11:5586–5591

    PubMed  CAS  Google Scholar 

  13. te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci USA 89:5128–5132

    Article  Google Scholar 

  14. Yang Y, Seed B (2003) Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat Biotechnol 21:447–451

    Article  PubMed  CAS  Google Scholar 

  15. Ringrose L, Chabanis S, Angrand PO, Woodroofe C, Stewart AF (1999) Quantitative comparison of DNA looping in vitro and in vivo: chromatin increases effective DNA flexibility at short distances. EMBO J 18:6630–6641

    Article  PubMed  CAS  Google Scholar 

  16. Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16:19–27

    Article  PubMed  CAS  Google Scholar 

  17. Green EL (1966) Biology of the laboratory mouse. McGraw-Hill, New York, p 11

    Google Scholar 

  18. Papaioannou V, Johnson R (2000) Production of chimeras by blastocyst and morula injection of targeted ES cells. Gene targeting. Oxford University Press, New York, USA, pp 101–175

    Google Scholar 

  19. Le YZ (2011) Conditional gene targeting: dissecting the cellular mechanisms of retinal degenerations. J Ophthalmol 2011:806783

    PubMed  Google Scholar 

  20. Novak A, Guo C, Yang W, Nagy A, Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28:147–155

    Article  PubMed  CAS  Google Scholar 

  21. Koike C, Nishida A, Ueno S, Saito H, Sanuki R, Sato S, Furukawa A, Aizawa S, Matsuo I, Suzuki N, Kondo M, Furukawa T (2007) Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol Cell Biol 27:8318–8329

    Article  PubMed  CAS  Google Scholar 

  22. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93:10887–10890

    Article  PubMed  CAS  Google Scholar 

  23. Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43–55

    Article  PubMed  CAS  Google Scholar 

  24. Rowan S, Cepko CL (2004) Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev Biol 271:388–402

    Article  PubMed  CAS  Google Scholar 

  25. Yang Z, Ding K, Pan L, Deng M, Gan L (2003) Math5 determines the competence state of retinal ganglion cell progenitors. Dev Biol 264:240–254

    Article  PubMed  CAS  Google Scholar 

  26. Campsall KD, Mazerolle CJ, De Repentingy Y, Kothary R, Wallace VA (2002) Characterization of transgene expression and Cre recombinase activity in a panel of Thy-1 promoter-Cre transgenic mice. Dev Dyn 224:135–143

    Article  PubMed  CAS  Google Scholar 

  27. Le YZ, Zheng L, Zheng W, Ash JD, Agbaga MP, Zhu M, Anderson RE (2006) Mouse opsin promoter-directed Cre recombinase expression in transgenic mice. Mol Vis 12:389–398

    PubMed  CAS  Google Scholar 

  28. Zimmerman L, Lendahl U, Cunningham M, McKay R, Parr B, Gavin B, Mann J, Vassileva G, McMahon A (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12:11–24

    Article  PubMed  CAS  Google Scholar 

  29. Kersigo J, D’Angelo A, Gray BD, Soukup GA, Fritzsch B (2011) The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis 49:326–341

    Article  PubMed  CAS  Google Scholar 

  30. Zhang XM, Chen BY, Ng AH, Tanner JA, Tay D, So KF, Rachel RA, Copeland NG, Jenkins NA, Huang JD (2005) Transgenic mice expressing Cre-recombinase specifically in retinal rod bipolar neurons. Invest Ophthalmol Vis Sci 46:3515–3520

    Article  PubMed  Google Scholar 

  31. Ivanova E, Hwang GS, Pan ZH (2010) Characterization of transgenic mouse lines expressing Cre recombinase in the retina. Neuroscience 165:233–243

    Article  PubMed  CAS  Google Scholar 

  32. Nakhai H, Sel S, Favor J, Mendoza-Torres L, Paulsen F, Duncker GI, Schmid RM (2007) Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134:1151–1160

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ding, Q., Gan, L. (2012). Conditional Control of Gene Expression in the Mouse Retina. In: Wang, SZ. (eds) Retinal Development. Methods in Molecular Biology, vol 884. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-848-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-848-1_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-847-4

  • Online ISBN: 978-1-61779-848-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics