Skip to main content

Mathematical Modeling of Biochemical Systems with PottersWheel

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 880))

Abstract

The program PottersWheel has been developed to provide an intuitive and yet powerful framework for data-based modeling of dynamical systems like biochemical reaction networks. Its key functionality is multi-experiment fitting, where several experimental data sets from different laboratory conditions are fitted simultaneously in order to improve the estimation of unknown model parameters, to check the validity of a given model, and to discriminate competing model hypotheses. New experiments can be designed interactively. Models are either created text-based or using a visual model designer. Dynamically generated and compiled C files provide fast simulation and fitting procedures. Each function can either be accessed using a graphical user interface or via command line, allowing for batch processing within custom Matlab scripts. PottersWheel is designed as a Matlab toolbox, comprises 250,000 lines of Matlab and C code, and is freely available for academic usage at www.potterswheel.de.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley, New York

    Book  Google Scholar 

  2. Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S et al (2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol 5:331

    Article  PubMed  Google Scholar 

  3. Jensen FV, Jensen FVV (1996) An introduction to Bayesian networks. UCL, London

    Google Scholar 

  4. Turner TE, Schnell S, Burrage K (2004 Jul) Stochastic approaches for modelling in vivo reactions. Comput Biol Chem 28(3):165–178

    Article  PubMed  CAS  Google Scholar 

  5. Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55

    Article  PubMed  CAS  Google Scholar 

  6. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006 Nov) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8(11):1195–1203

    Article  PubMed  CAS  Google Scholar 

  7. Murray JD (2003) Mathematical biology: spatial models and biomedical applications. Springer, Berlin

    Google Scholar 

  8. Maiwald T, Timmer J (2008 Sep 15) Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics 24(18):2037–2043

    Article  PubMed  CAS  Google Scholar 

  9. Swameye I, Muller TG, Timmer J, Sandra O, Klingmuller U (2003) Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. Proc Natl Acad Sci U S A 100(3):1028–1033

    Article  PubMed  CAS  Google Scholar 

  10. Bowden AC (1995) Fundamentals of enzyme kinetics, revised edn. Portland, London

    Google Scholar 

  11. Kreutz C, Bartolome Rodriguez MM, Maiwald T, Seidl M, Blum HE, Mohr L et al (2007) An error model for protein quantification. Bioinformatics 23(20):2747–2753

    Article  PubMed  CAS  Google Scholar 

  12. Hairer E, Wanner G (2010) Stiff and differential-algebraic problems. Solving ordinary differential equations II. Springer, Berlin

    Book  Google Scholar 

  13. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE et al (2005) SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw (TOMS) 31(3):396

    Article  Google Scholar 

  14. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19(6):716–723

    Article  Google Scholar 

  15. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  16. Ingber L (1993) Simulated annealing: Practice versus theory. Mathematical Computer Modelling 18(11):29–57 http://www.ingber.com/asa93_sapvt.pdf

  17. Sakata S (2009) ASAMIN: a Matlab gateway routine to adaptive simulated annealing (ASA)

    Google Scholar 

  18. Egea JA, Rodríguez-Fernández M, Banga JR, Martí R (2007) Scatter search for chemical and bio-process optimization. J Global Optim 37(3):481–503

    Article  Google Scholar 

  19. Hengl S, Kreutz C, Timmer J, Maiwald T (2007 Oct 1) Data-based identifiability analysis of non-linear dynamical models. Bioinformatics 23(19):2612–2618

    Article  PubMed  CAS  Google Scholar 

  20. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U et al (2009 Aug 1) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25(15):1923–1929

    Article  PubMed  CAS  Google Scholar 

  21. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17):3289

    Article  PubMed  CAS  Google Scholar 

  22. Borisov NM, Chistopolsky AS, Faeder JR, Kholodenko BN (2008 Sep) Domain-oriented reduction of rule-based network models. IET Syst Biol 2(5):342–351

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Maiwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Maiwald, T., Eberhardt, O., Blumberg, J. (2012). Mathematical Modeling of Biochemical Systems with PottersWheel. In: Liu, X., Betterton, M. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 880. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-833-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-833-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-832-0

  • Online ISBN: 978-1-61779-833-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics