Skip to main content

Complex Network Analysis in Microbial Systems: Theory and Examples

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 881))

Abstract

An essential idea in the area of Systems Biology is that a good understanding of interactions between components is crucial for developing deep knowledge of the functioning of the system as a whole. Network analysis is an approach uniquely suited to uncover patterns and organizing principles in a wide variety of complex systems. In this chapter, we will give a detailed description of central network concepts and their algorithmic implementation, and demonstrate how they may be applied on two biological networks: the protein-interaction network of Mus musculus and the reconstructed genome-scale metabolic network of the bacterium Yersinia pestis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  PubMed  CAS  Google Scholar 

  2. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genom Hum G 2:343–372

    Article  CAS  Google Scholar 

  3. Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends Microbiol 15:45–50

    Article  PubMed  CAS  Google Scholar 

  4. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  CAS  Google Scholar 

  5. Almaas E (2007) Biological impacts and context of network theory. J Exp Biol 210:1548–1558

    Article  PubMed  Google Scholar 

  6. Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  Google Scholar 

  7. Dorogovtsev SN, Mendes JFF (2002) Evolution of networks. Adv Phys 51:1079–1187

    Article  Google Scholar 

  8. Newman MEJ (2003) The structure and function of complex networks. Siam Rev 45:167–256

    Article  Google Scholar 

  9. Erdős P, Rényi A (1959) On random graphs I. Publ Math 6:290–297

    Google Scholar 

  10. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  11. Molloy M, Reed B (1995) A critical-point for random graphs with a given degree sequence. Random Struct Algor 6:161–179

    Article  Google Scholar 

  12. Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64(2):026118

    Article  CAS  Google Scholar 

  13. Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Modeling of protein interaction networks. Complexus 1:38–44

    Article  Google Scholar 

  14. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  Google Scholar 

  15. Batagelj V, Mrvar A (2002) Pajek—analysis and visualization of large networks. Graph Drawing 2265:477–478

    Article  Google Scholar 

  16. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539

    Article  PubMed  CAS  Google Scholar 

  17. Navid A, Almaas E (2009) Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001. Mol Biosyst 5:368–375

    Article  PubMed  CAS  Google Scholar 

  18. Newman M (2010) Networks: an introduction. Oxford University Press, New York

    Google Scholar 

  19. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  PubMed  CAS  Google Scholar 

  20. Newman MEJ (2001) Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev E 64(1):016132

    Article  CAS  Google Scholar 

  21. Sedgewick R (1988) Algorithms, 2nd edn. Addison-Wesley, Reading, Mass

    Google Scholar 

  22. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  PubMed  CAS  Google Scholar 

  23. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  PubMed  CAS  Google Scholar 

  24. Gilbert EN (1959) Random graphs. Ann Math Stat 30:1141–1144

    Article  Google Scholar 

  25. Erdos P, Renyi A (1960) On the evolution of random graphs. B Int Statist Inst 38:343–347

    Google Scholar 

  26. Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629–4632

    Article  PubMed  CAS  Google Scholar 

  27. Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Structure of growing networks with preferential linking. Phys Rev Lett 85:4633–4636

    Article  PubMed  CAS  Google Scholar 

  28. Albert R, Barabasi AL (2000) Topology of evolving networks: local events and universality. Phys Rev Lett 85:5234–5237

    Article  PubMed  CAS  Google Scholar 

  29. Amaral LAN, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA 97:11149–11152

    Article  PubMed  CAS  Google Scholar 

  30. Dorogovtsev SN, Mendes JFF (2000) Evolution of networks with aging of sites. Phys Rev E 62:1842–1845

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eivind Almaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zavareh, Z., Almaas, E. (2012). Complex Network Analysis in Microbial Systems: Theory and Examples. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 881. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-827-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-827-6_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-826-9

  • Online ISBN: 978-1-61779-827-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics