Skip to main content

Maize Somatic Embryogenesis: Recent Features to Improve Plant Regeneration

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Abstract

Plant regeneration capacity is maintained through the life of a plant by the stem cell niche present in the meristems. Stem cells are capable of differentiating into any plant organ, allowing propagation of new plants by different techniques. Among them, somatic embryogenesis is a widely used technique characterized by a complex process that involves coordinated expression of genes, mediated by the influence of specific hormones, nutrients, stress, and/or environmental signals. This tool is particularly relevant in the propagation of genetically improved crops. The intrinsic embryogenic potential of the explant used as starting material for plant in vitro cultures varies depending on the genotype of each plant species. Particularly in maize, the regeneration capacity is lost during the course of tissue maturation, since embryogenic callus (E) is almost exclusively obtained from immature zygotic embryos. In this chapter, the latest advances in the literature for maize somatic embryogenesis process are reviewed. Further, a detailed procedure for maize plant regeneration from E callus is described. The callus obtained from immature zygotic embryos is capable to generate somatic embryos that germinate and develop into fertile normal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin MA (2010) First generation biofuels compete. Nat Biotechnol 27:596–608

    CAS  Google Scholar 

  2. Orozco MA, Colín MS, Sánchez CAJ, Varela SA, Domínguez SS (2009) Resistencias, prehistoria, historia y diferencias de teocintle a maíz. ISBN:978-607-00-2125-1. DR ©Abel Munoz Orozco, México

    Google Scholar 

  3. West M, Harada JJ (1993) Embryogenesis in higher plants: an overview. Plant Cell 5:1361–1369

    PubMed  Google Scholar 

  4. Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    PubMed  Google Scholar 

  5. Ikeda M, Umehara M, Kamada H (2006) Embryogenesis-related genes; its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnol 23:153–161

    Article  CAS  Google Scholar 

  6. Goldberg RB, Barker SJ, Perez-Grau L (1989) Regulation of gene expression during plant embryogenesis. Cell 56:149–160

    Article  PubMed  CAS  Google Scholar 

  7. Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164:207–214

    Article  CAS  Google Scholar 

  8. Sánchez de Jimenez E, Vargas M, Aguilar R, Jimenez E (1988) Age-dependent responsiveness of callus to cell differentiation stimulus in maize callus culture. Plant Physiol Biochem 26:723–732

    Google Scholar 

  9. Jiménez VM, Bangerth F (2001) Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus culture derived from them as related to morphogenesis in vitro. Plant Sci 160:247–257

    Article  PubMed  Google Scholar 

  10. Monteiro M, Kevers C, Dommes J, Gaspar T (2002) A specific role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA Meyer. Plant Cell Tissue Organ Cult 68:225–232

    Article  CAS  Google Scholar 

  11. Bohorova EN, Luna B, Brito RM, Hoisington DA (1995) Regeneration potential of tropical and subtropical mid altitude and highland maize inbreeds. Maydica 40:275–281

    Google Scholar 

  12. El-Itriby HA, Assem SK, Hussein EHA et al (2003) Regeneration and transformation of Egyptian maize inbred lines via immature embryo culture and a biolistic particle delivery system. In Vitro Cell Dev Biol Plant 39:524–531

    Article  Google Scholar 

  13. Aguado-Santacruz GA, Garcia-Moya E, Aguilar-Acuna JL et al (2007) In vitro plant regeneration from quality protein maize. In Vitro Cell Dev Biol Plant 43:215–224

    CAS  Google Scholar 

  14. Rakshit S, Rashid Z, Sekhar JC et al (2010) Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds. Plant Cell Tissue Organ Cult 100:31–37

    Article  Google Scholar 

  15. He G, Zhang J, Li K et al (2006) An improved system to establish highly embryogenic haploid cell and protoplast cultures from pollen calluses of maize (Zea mays L.). Plant Cell Tissue Organ Cult 86:15–25

    Article  Google Scholar 

  16. Tang F, Tao Y, Zhao T, Wang G (2006) In vitro production of haploid and double haploid pants from pollinated ovaries of maize (Zea mays). Plant Cell Tissue Organ Cult 84:233–237

    Article  Google Scholar 

  17. Vladimir S, Gilbertson L, Adae P, Duncan D (2006) Agrobacterium mediated transformation of seedling-derived maize callus. Plant Cell Rep 25:320–328

    Article  Google Scholar 

  18. Sairam RV, Paran M, Franklin G et al (2003) Shoot meristem an ideal explant for Zea mays L transformation. Genome 46:323–329

    Article  PubMed  CAS  Google Scholar 

  19. Huang XQ, Wei ZM (2004) High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Rep 22:793–800

    Article  PubMed  CAS  Google Scholar 

  20. Armstrong CL, Green CE, Phillips RL (1991) Development and availability of germoplasm with high Type II culture formation response. Maize Genet Coop Newsletter 65:92–93

    Google Scholar 

  21. Abdel-Rahman MM, Widholm JM (2010) Maize tissue culture plant regeneration ability could be improved by polyethylene glycol treatment. In Vitro Cell Dev Biol 6:509–515

    Google Scholar 

  22. Green CE, Philips RL (1975) Plant regeneration from tissue cultures of maize. Crop Sci 15:417–421

    Article  Google Scholar 

  23. Deng S, Dong Z, Zhan K et al (2009) Moderate desiccation dramatically improves shoot regeneration from maize (Zea mays L.) callus. In Vitro Cell Dev Biol Plant 45:99–103

    Article  Google Scholar 

  24. Chu CC, Wang CC, Sun CS et al (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668

    Google Scholar 

  25. Fontanet P, Vicient CM (2008) Maize embryogenesis. In: Suárez MF, Bozhkov PV (eds) Plant embryogenesis, vol 427, Methods in molecular biology. Humana, Totowa, pp 17–29

    Chapter  Google Scholar 

  26. Loza-Rubio E, Rojas E, Gómez L et al (2008) Development of an edible rabies vaccine in maize using Vnukovo strain. In: Dodet B, Fooks AR, Müller T, Tordo N, Scientific and Technical Department of the OIE (eds) Towards the elimination of rabies in Eurasia. Developments in biologicals, vol 131. Karger, Basel, pp 477–482

    Google Scholar 

  27. Che P, Love TM, Frame BR et al (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14

    Article  PubMed  CAS  Google Scholar 

  28. Duncan DR, Kriz AL, Widholm JM (2003) Globulin-1 gene expression in regenerable Zea mays (maize) callus. Plant Cell Rep 21:684–689

    PubMed  CAS  Google Scholar 

  29. Loyola-Vargas VM, Sánchez de Jiménez E (1986) Effect of substrate, ammonium and glutamine on nitrogen assimilation enzymes during callus growth of maize. J Plant Physiol 125:235–242

    Article  CAS  Google Scholar 

  30. Lozovaya V, Ulanov A, Lygin A et al (2006) Biochemical features of maize tissues with different capacities to regenerate plants. Planta 224:1385–1399

    Article  PubMed  CAS  Google Scholar 

  31. Spencer TM, Gordon-Kamm WJ, Daines RJ et al (1990) Bialaphos selection of stable transformants from maize cell culture. Theor Appl Genet 79:625–631

    Article  CAS  Google Scholar 

  32. Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

    Article  Google Scholar 

  33. Songstad DD, Armstrong CL, Petersen WL et al (1996) Production of transgenic maize plants and progeny by bombardment of Hi II immature zygotic embryos. In Vitro Cell Dev Biol Plant 32:179–183

    Article  Google Scholar 

  34. Frame BR, Zhang H, Cocciolone SM et al (2000) Production of transgenic maize from bombarded Type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Biol Plant 36:21–29

    Article  Google Scholar 

  35. Yang A, He C, Zhang K, Zhang J (2006) Improvement    of    agrobacterium-mediated transformation of embryogenic calluses from maize elite inbred lines. In Vitro Cell Dev Biol Plant 42:215–219

    Article  CAS  Google Scholar 

  36. Petolino JF, Arnold NL (2009) Whiskers-mediated maize transformation. In: Scott MP (ed) Transgenic maize, Methods in molecular biology. Humana, Clifton. doi:10.1007/976-1 597 45-494-D_5

    Google Scholar 

  37. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  38. García-Flores C, Sánchez de Jiménez E, Marquez-Guzman J (1993) Induction and maintenance of embryonic cultures of Zea mays L (Poaceae). Phyton 54:1–6

    Google Scholar 

Download references

Acknowledgments

This project received financial support from Consejo Nacional de Ciencia y Tecnologia (CONACYT) grant No. 101327.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estela Sánchez Quintanar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Garrocho-Villegas, V., de Jesús-Olivera, M.T., Quintanar, E.S. (2012). Maize Somatic Embryogenesis: Recent Features to Improve Plant Regeneration. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 877. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-818-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-818-4_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-817-7

  • Online ISBN: 978-1-61779-818-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics