Skip to main content

Identification, Isolation, and Culture of Intestinal Epithelial Stem Cells from Murine Intestine

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 879))

Abstract

The study of adult stem cell populations provides insight into the mechanisms that regulate tissue maintenance in normal physiology and many disease states. With an impressive rate of epithelial renewal driven by a pool of multipotent stem cells, the intestine is a particularly advantageous model system for the study of adult stem cells. Until recently, the isolation and in vitro study of intestinal epithelial stem cells (IESCs) was not possible due to the lack of biomarkers and culture techniques. However, advances in molecular characterization and culture of IESCs have made in vitro studies on this cell type amenable to most laboratories. The methods described in this chapter will allow the investigator to adapt newly established techniques toward downstream analysis of IESCs in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wright N, Allison M (1984) The biology of epithelial cell populations. Clarindon, Oxford

    Google Scholar 

  2. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat 141(4):537–561

    Article  PubMed  CAS  Google Scholar 

  3. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat 141(4):461–479

    Article  PubMed  CAS  Google Scholar 

  4. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am J Anat 141(4): 503–519

    Article  PubMed  CAS  Google Scholar 

  5. Isomaki AM (1973) A new cell type (tuft cell) in the gastrointestinal mucosa of the rat. A transmission and scanning electron microscopic study. Acta Pathol Microbiol Scand A suppl 240:1

    Google Scholar 

  6. Barker N et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    Article  PubMed  CAS  Google Scholar 

  7. Sato T et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418

    Article  PubMed  CAS  Google Scholar 

  8. Sato T et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265

    Article  PubMed  CAS  Google Scholar 

  9. Furuyama K et al (2011) Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 43(1):34–41

    Article  PubMed  CAS  Google Scholar 

  10. Formeister EJ et al (2009) Distinct SOX9 levels differentially mark stem/progenitor populations and enteroendocrine cells of the small intestine epithelium. Am J Physiol Gastrointest Liver Physiol 296(5):G1108–G1118

    Article  PubMed  CAS  Google Scholar 

  11. Gracz AD, Ramalingam S, Magness ST (2010) Sox9-expression marks a subset of CD24-expressing small intestine epithelial stem cells that form organoids in vitro. Am J Physiol Gastrointest Liver Physiol 298(5):G590–G600

    Article  PubMed  CAS  Google Scholar 

  12. von Furstenberg RJ et al (2010) Sorting mouse jejunal epithelial cells with CD24 yields a population with characteristics of intestinal stem cells. Am J Physiol Gastrointest Liver Physiol 300(3):G409–G417

    Article  Google Scholar 

  13. Obrink B (1986) Epithelial cell adhesion molecules. Exp Cell Res 163(1):1–21

    Article  PubMed  CAS  Google Scholar 

  14. Holden KG et al (1971) Gel electrophoresis of mucous glycoproteins. II. Effect of physical deaggregation and disulfide-bond cleavage. Biochemistry 10(16):3110–3113

    Article  PubMed  CAS  Google Scholar 

  15. Trowbridge IS, Ralph P, Bevan MJ (1975) Differences in the surface proteins of mouse B and T cells. Proc Natl Acad Sci U S A 72(1):157–161

    Article  PubMed  CAS  Google Scholar 

  16. Fabre JW, Williams AF (1977) Quantitative serological analysis of a rabbit anti-rat lymphocyte serum and preliminary biochemical characterisation of the major antigen recognised. Transplantation 23(4):349–359

    Article  PubMed  CAS  Google Scholar 

  17. Muller WA et al (1989) A human endothelial cell-restricted, externally disposed plasmalemmal protein enriched in intercellular junctions. J Exp Med 170(2):399–414

    Article  PubMed  CAS  Google Scholar 

  18. Ohto H et al (1985) A novel leukocyte differentiation antigen: two monoclonal antibodies TM2 and TM3 define a 120-kd molecule present on neutrophils, monocytes, platelets, and activated lymphoblasts. Blood 66(4):873–881

    PubMed  CAS  Google Scholar 

  19. Ashman LK et al (1991) Different epitopes of the CD31 antigen identified by monoclonal antibodies: cell type-specific patterns of expression. Tissue Antigens 38(5):199–207

    Article  PubMed  CAS  Google Scholar 

  20. Bergsagel PL et al (1992) A murine cDNA encodes a pan-epithelial glycoprotein that is also expressed on plasma cells. J Immunol 148(2):590–596

    PubMed  CAS  Google Scholar 

  21. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  22. Griffin PJ, Fogarty WM (1971) Some properties of a protease from Bacillus polymyxa. Biochem J 125(4):109P

    PubMed  CAS  Google Scholar 

  23. Sasaki T et al (2002) Expression and distribution of laminin alpha1 and alpha2 chains in embryonic and adult mouse tissues: an immunochemical approach. Exp Cell Res 275(2):185–199

    Article  PubMed  CAS  Google Scholar 

  24. Kim KA et al (2005) Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 309(5738):1256–1259

    Article  PubMed  CAS  Google Scholar 

  25. Li L et al (1998) The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 8(1):43–55

    Article  PubMed  CAS  Google Scholar 

  26. Haramis AP et al (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303(5664):1684–1686

    Article  PubMed  CAS  Google Scholar 

  27. Dignass AU, Sturm A (2001) Peptide growth factors in the intestine. Eur J Gastroenterol Hepatol 13(7):763–770

    Article  PubMed  CAS  Google Scholar 

  28. Brewer GJ, Cotman CW (1989) Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Res 494(1):65–74

    Article  PubMed  CAS  Google Scholar 

  29. Johe KK et al (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10(24):3129–3140

    Article  PubMed  CAS  Google Scholar 

  30. Watanabe K et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Victoria Bali, Ph.D., for critical reading of the document. Additionally, we would like to acknowledge Jill Carrington, Ph.D., who to our knowledge was the first to coin the term “cryptoid.” The original work described in this chapter was funded by the National Institutes of Health, 1-K01-DK080181-01, the American Gastroenterological Association Research Scholar Award, the North Carolina Biotechnology Center Grant, and the UNC-Chapel Hill the Center for Gastrointestinal Biology and Disease, 5P30DK034987 (S.T. Magness).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Magness .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gracz, A.D., Puthoff, B.J., Magness, S.T. (2012). Identification, Isolation, and Culture of Intestinal Epithelial Stem Cells from Murine Intestine. In: Singh, S. (eds) Somatic Stem Cells. Methods in Molecular Biology, vol 879. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-815-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-815-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-814-6

  • Online ISBN: 978-1-61779-815-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics