Skip to main content

Current Thoughts on the Therapeutic Potential of Stem Cell

  • Protocol
  • First Online:
Somatic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 879))

Abstract

Stem cells are considered as potential therapy for inflammatory disorders, tissue repair, and gene delivery, among others. The heterogeneity of a disease and the underlying disorder of a patient bring up the question on the method by which stem cells should be delivered. This summary discusses potential complex interactions among mediators at sites to tissue insults with stem cells. The chapter selects mesenchymal stem cells (MSCs) as a model, although the discussion is relevant to all stem cells. The review examines how MSCs and their differentiated cells can develop cross communication with soluble factors and cells within the region of tissue damage. Inflammatory cytokines, IL-1, TNFα, and TGFβ are selected to explain how they can affect the responses of MSCs, while predisposing the stem cells to oncogenic event. By understanding the varied functions of MSCs, one will be able to intervene to form a balance in functions, ultimately to achieve safety and efficient application. Cytokines can affect the expression of pluripotent genes such as REST and Oct-4. REST is a critical gene in the decision of a cell to express or repress neural genes. Since cytokines can affect microRNAs, the review incorporates this family of molecules as mediators of cytokine effects. IFNγ, although an inflammatory mediator, is central to the expression of MHC-II on MSCs. Therefore, it is included to discuss its role in the transplantation of stem cells across allogeneic barrier. In summary, this chapter discusses several potential areas that need to be addressed for safe and efficient delivery of stem cells, and argue for the incorporation of microenvironmental factors in the studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCulloch EA, Till JE (2005) Perspectives on the properties of stem cells. Nat Med 11:1026–1028

    PubMed  CAS  Google Scholar 

  2. Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, Gallacher L, Ferber I, Lebkowski J, Martin T, Madrenas J, Bhatia M (2004) Human embryonic stem cells possess immune-privileged properties. Stem Cells 22:448–456

    PubMed  CAS  Google Scholar 

  3. Drukker M, Katchman H, Katz G, Even-Tov FS, Shezen E, Hornstein E, Mandelboim O, Reisner Y, Benvenisty N (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24:221–229

    PubMed  Google Scholar 

  4. Swijnenburg RJ, Schrepfer S, Govaert JA, Cao F, Ransohoff K, Sheikh AY, Haddad M, Connolly AJ, Davis MM, Robbins RC, Wu JC (2008) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci USA 105:12991–12996

    PubMed  CAS  Google Scholar 

  5. Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100:133–158

    PubMed  Google Scholar 

  6. Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26:300–311

    PubMed  Google Scholar 

  7. Dan YY, Riehle KJ, Lazaro C, Teoh N, Haque J, Campbell JS, Fausto N (2006) Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc Natl Acad Sci USA 103:9912–9917

    PubMed  CAS  Google Scholar 

  8. De Coppi P, Bartsch G, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotech 25:100–106

    Google Scholar 

  9. Siegel N, Rosner M, Unbekandt M, Fuchs C, Slabina N, Dolznig H, Davies JA, Lubec G, Hengstschlager M (2010) Contribution of human amniotic fluid stem cells to renal tissue formation depends on mTOR. Hum Mol Genet 19(17):3320–3331

    PubMed  CAS  Google Scholar 

  10. Perin L, Sedrakyan S, Giuliani S, Da Sacco S, Carraro G, Shiri L, Lemley KV, Rosol M, Wu S, Atala A, Warburton D, De Filippo RE (2010) Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 5:e9357

    PubMed  Google Scholar 

  11. Fuchs E (2008) Skin stem cells: rising to the surface. J Cell Biol 180:273–284

    PubMed  CAS  Google Scholar 

  12. Takebe N, Ivy SP (2010) Controversies in cancer stem cells: targeting embryonic signaling pathways. Clin Cancer Res 16:3106–3112

    PubMed  CAS  Google Scholar 

  13. Clement V, Dutoit V, Marino D, Dietrich PY, Radovanovic I (2009) Limits of CD133 as a marker of glioma self-renewing cells. Int J Cancer 125:244–248

    PubMed  CAS  Google Scholar 

  14. Greco SJ, Liu K, Rameshwar P (2007) Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells 25:3143–3154

    PubMed  CAS  Google Scholar 

  15. Woodward WA, Chen MS, Behbod F, Rosen JM (2005) On mammary stem cells. J Cell Sci 118:3585–3594

    PubMed  CAS  Google Scholar 

  16. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402

    PubMed  CAS  Google Scholar 

  17. Castillo M, Liu K, Bonilla LM, Rameshwar P (2007) The immune properties of mesenchymal stem cells. Intl J Biomed Sci 3:100–104

    Google Scholar 

  18. Dominici M, Paolucci P, Conte P, Horwitz EM (2009) Heterogeneity of multipotent mesenchymal stromal cells: from stromal cells to stem cells and vice versa. Transplantation 87:S36–S42

    PubMed  Google Scholar 

  19. Sakaguchi Y, Sekiya I, Yagishita K, Ichinose S, Shinomiya K, Muneta T (2004) Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood 104:2728–2735

    PubMed  CAS  Google Scholar 

  20. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    PubMed  CAS  Google Scholar 

  21. Meliga E, Strem BM, Duckers HJ, Serruys PW (2007) Adipose-derived cells. Cell Transplant 16:963–970

    PubMed  Google Scholar 

  22. Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26:591–599

    PubMed  Google Scholar 

  23. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392

    PubMed  CAS  Google Scholar 

  24. Caplan AI (1994) The mesengenic process. Clin Plast Surg 21:429–435

    PubMed  CAS  Google Scholar 

  25. Delorme B, Ringe J, Pontikoglou C, Gaillard J, Langonne A, Sensebe L, Noel D, Jorgensen C, Haupl T, Charbord P (2009) Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity. Stem Cells 27:1142–1151

    PubMed  CAS  Google Scholar 

  26. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    PubMed  CAS  Google Scholar 

  27. Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz EM (2007) Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 109:4245–4248

    PubMed  CAS  Google Scholar 

  28. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24:1054–1064

    PubMed  CAS  Google Scholar 

  29. Padovan CS, Jahn K, Birnbaum T, Reich P, Sostak P, Strupp M, Straube A (2003) Expression of neuronal markers in differentiated marrow stromal cells and CD133+ stem-like cells. Cell Transplant 12:839–848

    PubMed  Google Scholar 

  30. Greco SJ, Zhou C, Ye JH, Rameshwar P (2007) An interdisciplinary approach and characterization of neuronal cells transdifferentiated from human mesenchymal stem cells. Stem Cells Dev 16:811–826

    PubMed  CAS  Google Scholar 

  31. Trzaska KA, King CC, Li KY, Kuzhikandathil EV, Nowycky MC, Ye JH, Rameshwar P (2009) Brain-derived neurotrophic factor facilitates maturation of mesenchymal stem cell-derived dopamine progenitors to functional neurons. J Neurochem 110:1058–1069

    PubMed  CAS  Google Scholar 

  32. Trzaska KA, Reddy BY, Munoz JL, Li KY, Ye JH, Rameshwar P (2008) Loss of RE-1 silencing factor in mesenchymal stem cell-derived dopamine progenitors induces functional maturity. Mol Cell Neurosci 39:285–290

    PubMed  CAS  Google Scholar 

  33. Trzaska KA, Kuzhikandathil EV, Rameshwar P (2007) Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells 25:2797–2808

    PubMed  CAS  Google Scholar 

  34. Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P (2003) Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 171:3426–3434

    PubMed  CAS  Google Scholar 

  35. Blanc KL, Pittenger MF (2005) Mesenchymal stem cells: progress toward promise. Cytotherapy 7:36–45

    PubMed  Google Scholar 

  36. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar 

  37. Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C, Rosset P, Sensebe L, Layrolle P, Haupl T, Charbord P (2008) Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111:2631–2635

    PubMed  CAS  Google Scholar 

  38. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    PubMed  CAS  Google Scholar 

  39. Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229–230

    PubMed  CAS  Google Scholar 

  40. Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa SI (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129:1377–1388

    PubMed  CAS  Google Scholar 

  41. Brohlin M, Mahay D, Novikov LN, Terenghi G, Wiberg M, Shawcross SG, Novikova LN (2009) Characterisation of human mesenchymal stem cells following differentiation into Schwann cell-like cells. Neurosci Res 64:41–49

    PubMed  Google Scholar 

  42. Cho KJ, Trzaska KA, Greco SJ, McArdle J, Wang FS, Ye JH, Rameshwar P (2005) Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1{alpha}. Stem Cells 23:383–391

    PubMed  CAS  Google Scholar 

  43. Katarzyna AT, Eldo VK, Pranela R (2007) Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells 25:2797–2808

    Google Scholar 

  44. Nemeth K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    PubMed  CAS  Google Scholar 

  45. Bocelli-Tyndall C, Barbero A, Candrian C, Ceredig R, Tyndall A, Martin I (2006) Human articular chondrocytes suppress in vitro proliferation of anti-CD3 activated peripheral blood mononuclear cells. J Cell Physiol 209:732–734

    PubMed  CAS  Google Scholar 

  46. Jones BJ, McTaggart SJ (2008) Immuno­suppression by mesenchymal stromal cells: from culture to clinic. Exp Hematol 36:733–741

    Google Scholar 

  47. Zhao S, Wehner R, Bornhañuser M, Wassmuth R, Bachmann M, Schmitz M (2010) Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev 19:607–614

    PubMed  CAS  Google Scholar 

  48. Wagner J, Kean T, Young R, Dennis JE, Caplan AI (2009) Optimizing mesenchymal stem cell-based therapeutics. Curr Opin Biotechnol 20:531–536

    PubMed  CAS  Google Scholar 

  49. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdqn O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    PubMed  Google Scholar 

  50. Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc VG, Hodges MG, Jelinek I, Madala S, Karpati S, Mezey E (2010) Bone marrow stromal cells use TGF-β to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci USA 107:5652–5657

    PubMed  CAS  Google Scholar 

  51. Lim PK, Patel SA, Gregory LA, Rameshwar P (2010) Neurogenesis: role for microRNAs and mesenchymal stem cells in pathological states. Curr Med Chem 17(20):2159–2167

    PubMed  CAS  Google Scholar 

  52. Ko IK, Kim BG, Awadallah A, Mikulan J, Lin P, Letterio JJ, Dennis JE (2010) Targeting improves MSC treatment of inflammatory bowel disease. Mol Ther 18:1365–1372

    PubMed  CAS  Google Scholar 

  53. Richardson SM, Hoyland JA, Mobasheri R, Csaki C, Shakibaei M, Mobasheri A (2010) Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol 222:23–32

    PubMed  CAS  Google Scholar 

  54. da Silva ML, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299

    Google Scholar 

  55. Greco SJ, Rameshwar P (2007) Enhancing effect of IL-1 on neurogenesis from adult human mesenchymal stem cells: implication for inflammatory mediators in regenerative medicine. J Immunol 179:3342–3350

    PubMed  CAS  Google Scholar 

  56. Schinkothe T, Bloch W, Schmidt A (2008) In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev 17:199–206

    PubMed  CAS  Google Scholar 

  57. Chan JL, Tang KC, Patel AP, Bonilla LM, Pierobon N, Ponzio NM, Rameshwar P (2006) Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 107:4817–4824

    PubMed  CAS  Google Scholar 

  58. Heng BC, Cowan CM, Davalian D, Stankus J, Duong-Hong D, Ehrenreich K, Basu S (2009) Electrostatic binding of nanoparticles to mesenchymal stem cells via high molecular weight polyelectrolyte chains. J Tissue Eng Regen Med 3:243–254

    PubMed  CAS  Google Scholar 

  59. Romieu-Mourez R, Francois M, Boivin MN, Stagg J, Galipeau J (2007) Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-{gamma}, TGF-beta, and cell density. J Immunol 179:1549–1558

    PubMed  CAS  Google Scholar 

  60. Campeau PM, Rafei M, Francois M, Birman E, Forner KA, Galipeau J (2008) Mesenchymal stromal cells engineered to express erythropoietin induce anti-erythropoietin antibodies and anemia in allorecipients. Mol Ther 17:369–372

    PubMed  Google Scholar 

  61. Pistoia V, Raffaghello L (2010) Potential of mesenchymal stem cells for the therapy of autoimmune diseases. Expert Rev Clin Immunol 6:211–218

    PubMed  CAS  Google Scholar 

  62. Rameshwar P, Qiu H, Vatner SF (2010) Stem cells in cardiac repair in an inflammatory microenvironment. Minerva Cardioangiol 58:127–146

    PubMed  CAS  Google Scholar 

  63. Patel SA, Sherman L, Munoz J, Rameshwar P (2008) Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp 56:1–8

    CAS  Google Scholar 

  64. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453

    PubMed  CAS  Google Scholar 

  65. Dominici M, Le BK, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    PubMed  CAS  Google Scholar 

  66. Pfeifer JD, Wick MJ, Roberts RL, Findlay K, Normark SJ, Harding CV (1993) Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 361:359–362

    PubMed  CAS  Google Scholar 

  67. Stagg J (2007) Immune regulation by mesenchymal stem cells: two sides to the coin. Tissue Antigens 69:1–9

    PubMed  CAS  Google Scholar 

  68. Stagg J, Pommey S, Eliopoulos N, Galipeau J (2006) Interferon-{gamma}-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 107:2570–2577

    PubMed  CAS  Google Scholar 

  69. Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4:281–286

    PubMed  CAS  Google Scholar 

  70. Herrero C, Sebastian C, Marquqs L, Comalada M, Xaus J, Valledor AF, Lloberas J, Celada A (2002) Immunosenescence of macrophages: reduced MHC class II gene expression. Exp Gerontol 37:389–394

    PubMed  CAS  Google Scholar 

  71. Tang KC, Trzaska KA, Smirnov S, Kotenko SV, Schwander SK, Ellner JJ, Rameshwar P (2008) Down-regulation of MHC-II in mesenchymal stem cells at high IFN- can be partly explained by cytoplasmic retention of CIITA. J Immunol 180:1826–1833

    PubMed  CAS  Google Scholar 

  72. Castillo MD, Trzaska KA, Greco SJ, Ponzio NM, Rameshwar P (2008) Immunostimulatory effects of mesenchymal stem cell-derived neurons: implications for stem cell therapy in allogeneic transplantations. Clin Transl Sci 1:27–34

    PubMed  CAS  Google Scholar 

  73. Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5:629–640

    PubMed  CAS  Google Scholar 

  74. Moore MA (2002) Cytokine and chemokine networks influencing stem cell proliferation, differentiation, and marrow homing. J Cell Biochem Suppl 38:29–38

    PubMed  Google Scholar 

  75. Laver J, Moore MAS (1989) Clinical use of recombinant human hematopoietic growth factors. J Natl Cancer Inst 81:1370–1382

    PubMed  CAS  Google Scholar 

  76. Dinarello CA (2005) Blocking IL-1 in systemic inflammation. J Exp Med 201:1355–1359

    PubMed  CAS  Google Scholar 

  77. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87:2095–2147

    PubMed  CAS  Google Scholar 

  78. Bagby GC (1989) Interleukin-1 and hematopoiesis. Blood Rev 3:152–161

    PubMed  Google Scholar 

  79. Roberts AB, Sporn MB (1993) Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8:1–9

    PubMed  CAS  Google Scholar 

  80. Massague J, Andres J, Attisano L, Cheifetz S, Lopez-Casillas F, Ohtsuki M, Wrana JL (1992) TGF-beta receptors. Mol Reprod Dev 32:99–104

    PubMed  CAS  Google Scholar 

  81. Massague J, Weis-Garcia F (1996) Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer Surv 27:41–64

    PubMed  CAS  Google Scholar 

  82. Shi Y, Massague J (2003) Mechanisms of TGF-[beta] signaling from cell membrane to the nucleus. Cell 113:685–700

    PubMed  CAS  Google Scholar 

  83. Wrana JL (2000) Regulation of Smad activity. Cell 100:189–192

    PubMed  CAS  Google Scholar 

  84. Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754

    PubMed  CAS  Google Scholar 

  85. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112:1486–1494

    PubMed  CAS  Google Scholar 

  86. Mehra A, Wrana JL (2002) TGF-beta and the Smad signal transduction pathway. Biochem Cell Biol 80:605–622

    PubMed  CAS  Google Scholar 

  87. Golestaneh N, Mishra B (2005) TGF-beta, neuronal stem cells and glioblastoma. Oncogene 24:5722–5730

    PubMed  CAS  Google Scholar 

  88. Sokol JP, Schiemann WP (2004) Cystatin C antagonizes transforming growth factor beta signaling in normal and cancer cells. Mol Cancer Res 2:183–195

    PubMed  CAS  Google Scholar 

  89. Downing JR (2004) TGF-{beta} signaling, tumor suppression, and acute lymphoblastic leukemia. N Engl J Med 351:528–530

    PubMed  CAS  Google Scholar 

  90. Kim SJ, Letterio J (2003) Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia 17:1731–1737

    PubMed  CAS  Google Scholar 

  91. Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 117:244–279

    PubMed  CAS  Google Scholar 

  92. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    PubMed  CAS  Google Scholar 

  93. van den Berk LCJ, Jansen BJH, Siebers-Vermeulen KGC, Roelofs H, Figdor CG, Adema GJ, Torensma R (2009) Mesenchymal stem cells respond to TNF but do not produce TNF. J Leukoc Biol 87:283–289

    PubMed  Google Scholar 

  94. Romieu-Mourez R, Francois M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J (2009) Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol 182:7963–7973

    PubMed  CAS  Google Scholar 

  95. Fu X, Han B, Cai S, Lei Y, Sun T, Sheng Z (2009) Migration of bone marrow-derived mesenchymal stem cells induced by tumor necrosis factor-alpha and its possible role in wound healing. Wound Repair Regen 17:185–191

    PubMed  Google Scholar 

  96. Kim YS, Park HJ, Hong MH, Kang PM, Morgan JP, Jeong MH, Cho JG, Park JC, Ahn Y (2009) TNF-alpha enhances engraftment of mesenchymal stem cells into infarcted myocardium. Front Biosci 14:2845–2856

    PubMed  CAS  Google Scholar 

  97. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    PubMed  CAS  Google Scholar 

  98. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    PubMed  CAS  Google Scholar 

  99. Ambros V, Bartel B, Bartel DP, Burge CB, Chen X, Carrington JC, Dreyfuss G, Eddy SR, Griffith-Jones S, Marshall M, Matzke M, Ruvkun G (2003) A uniform system for microRNA annotation. RNA 9:277–279

    PubMed  CAS  Google Scholar 

  100. Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309:1519–1524

    PubMed  CAS  Google Scholar 

  101. Kim J, Krichevsky A, Grad Y, Hayes GD, Kosik KS, Church GM, Ruvkun G (2004) Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci USA 101:360–365

    PubMed  CAS  Google Scholar 

  102. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    PubMed  CAS  Google Scholar 

  103. Ramkissoon SH, Mainwaring LA, Ogasawara Y, Keyvanfar K, Philip McCoy J, Sloand EM, Kajigaya S, Young NS (2006) Hematopoietic-specific microRNA expression in human cells. Leuk Res 30:643–647

    PubMed  CAS  Google Scholar 

  104. Harfe BD (2005) MicroRNAs in vertebrate development. Curr Opin Genet Dev 15:410–415

    PubMed  CAS  Google Scholar 

  105. Miska E, varez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    PubMed  Google Scholar 

  106. Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, Greengard P (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    PubMed  CAS  Google Scholar 

  107. Greco SJ, Rameshwar P (2007) miRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. Proc Natl Acad Sci USA 104:15484–15489

    PubMed  CAS  Google Scholar 

  108. Garcia-Sastre A, Biron CA (2006) Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312:879–882

    PubMed  CAS  Google Scholar 

  109. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, Trinchieri G (1989) Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 170:827–845

    PubMed  CAS  Google Scholar 

  110. Kang HS, Habib M, Chan J, Abavana C, Potian JA, Ponzio NM, Rameshwar P (2005) A paradoxical role for IFN-[gamma] in the immune properties of mesenchymal stem cells during viral challenge. Exp Hematol 33:796–803

    PubMed  CAS  Google Scholar 

  111. Stark GR, Kerr IM, Williams BRG, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264

    PubMed  CAS  Google Scholar 

  112. Ahmed CMI, Burkhart MA, Mujtaba MG, Subramaniam PS, Johnson HM (2003) The role of IFN{gamma} nuclear localization sequence in intracellular function. J Cell Sci 116:3089–3098

    PubMed  CAS  Google Scholar 

  113. Subramaniam PS, Green MM, Larkin J III, Torres BA, Johnson HM (2001) Nuclear translocation of IFN-gamma is an intrinsic requirement for its biologic activity and can be driven by a heterologous nuclear localization sequence. J Interferon Cytokine Res 21:951–959

    PubMed  CAS  Google Scholar 

  114. Subramaniam PS, Johnson HM (2004) The IFNAR1 subunit of the type I IFN receptor complex contains a functional nuclear localization sequence. FEBS Lett 578:207–210

    PubMed  CAS  Google Scholar 

  115. Bergmann CC, Parra B, Hinton DR, Chandran R, Morrison M, Stohlman SA (2003) Perforin-mediated effector function within the central nervous system requires IFN-{gamma}-mediated MHC up-regulation. J Immunol 170:3204–3213

    PubMed  CAS  Google Scholar 

  116. Boss JM (1997) Regulation of transcription of MHC class II genes. Curr Opin Immunol 9:107–113

    PubMed  CAS  Google Scholar 

  117. English K, Barry FP, Mahon BP (2008) Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett 115:50–58

    PubMed  CAS  Google Scholar 

  118. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP (2009) Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol 156:149–160

    PubMed  CAS  Google Scholar 

  119. Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E, Genrich K, Mehrotra S, Setty S, Smith B, Bartholomew A (2008) IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 38:1745–1755

    PubMed  CAS  Google Scholar 

  120. Capitini CM, Herby S, Milliron M, Anver MR, Mackall CL, Fry TJ (2009) Bone marrow deficient in IFN-{gamma} signaling selectively reverses GVHD-associated immunosuppression and enhances a tumor-specific GVT effect. Blood 113:5002–5009

    PubMed  CAS  Google Scholar 

  121. DelaRosa O, Lombardo E, Beraza A, Mancheno-Corvo P, Ramirez C, Menta R, Rico L, Camarillo E, Garcia L, Abad JL, Trigueros C, Delgado M, Buscher D (2009) Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng Part A 15:2795–2806

    PubMed  CAS  Google Scholar 

  122. Francois M, Romieu-Mourez R, Stock-Martineau S, Boivin MN, Bramson JL, Galipeau J (2009) Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties. Blood 114:2632–2638

    PubMed  CAS  Google Scholar 

  123. Coulson JM (2005) Transcriptional regulation: cancer, neurons and the REST. Curr Biol 15:R665–R668

    PubMed  CAS  Google Scholar 

  124. Fiskerstrand CE, Newey P, McGregor GP, Gerrard L, Millan F, Quinn JP (2000) A role for Octamer binding protein motifs in the regulation of the proximal preprotachykinin-A promoter. Neuropeptides 34:348–354

    PubMed  CAS  Google Scholar 

  125. Quinn JP, Bubb VJ, Marshall-Jones ZV, Coulson JM (2002) Neuron restrictive silencer factor as a modulator of neuropeptide gene expression. Regul Pept 108:135–141

    PubMed  CAS  Google Scholar 

  126. Su X, Kameoka S, Lentz S, Majumder S (2004) Activation of REST/NRSF target genes in neural stem cells is sufficient to cause neuronal differentiation. Mol Cell Biol 24:8018–8025

    PubMed  CAS  Google Scholar 

  127. Yeo M, Lee SK, Lee B, Ruiz EC, Pfaff SL, Gill GN (2005) Small CTD phosphatases function in silencing neuronal gene expression. Science 307:596–600

    PubMed  CAS  Google Scholar 

  128. Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Gottgens B, Buckley NJ (2004) Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci USA 101:10458–10463

    PubMed  CAS  Google Scholar 

  129. Wood IC, Belyaev ND, Bruce AW, Jones C, Mistry M, Roopra A, Buckley NJ (2003) Interaction of the repressor element 1-silencing transcription factor (REST) with target genes. J Mol Biol 334:863–874

    PubMed  CAS  Google Scholar 

  130. Belyaev ND, Wood IC, Bruce AW, Street M, Trinh JB, Buckley NJ (2004) Distinct RE-1 silencing transcription factor-containing complexes interact with different target genes. J Biol Chem 279:556–561

    PubMed  CAS  Google Scholar 

  131. Zhang P, Pazin MJ, Schwartz CM, Becker KG, Wersto RP, Dilley CM, Mattson MP (2008) Nontelomeric TRF2-REST interaction modulates neuronal gene silencing and fate of tumor and stem cells. Curr Biol 18:1489–1494

    PubMed  Google Scholar 

  132. Greenway DJ, Street M, Jeffries A, Buckley NJ (2007) RE1 silencing transcription factor maintains a repressive chromatin environment in embryonic hippocampal neural stem cells. Stem Cells 25:354–363

    PubMed  CAS  Google Scholar 

  133. Sun YM, Greenway DJ, Johnson R, Street M, Belyaev ND, Deuchars J, Bee T, Wilde S, Buckley NJ (2005) Distinct profiles of REST interactions with its target genes at different stages of neuronal development. Mol Biol Cell 16:5630–5638

    PubMed  CAS  Google Scholar 

  134. Trosko JE (2006) From adult stem cells to cancer stem cells: Oct-4 Gene, cell-cell communication, and hormones during tumor promotion. Ann N Y Acad Sci 1089:36–58

    PubMed  CAS  Google Scholar 

  135. Greco SJ, Smirnov S, Rameshwar P (2007) Synergy between RE-1 silencer of transcription (REST) and NFêB in the repression of the neurotransmitter gene Tac1 in human mesenchymal stem cells: implication for microenvironmental influence on stem cell therapies. J Biol Chem 282:30039–30050

    PubMed  CAS  Google Scholar 

  136. Weissman AM (2008) How much REST is enough? Cancer Cell 13:381–383

    PubMed  CAS  Google Scholar 

  137. Majumder S (2006) REST in good times and bad: roles in tumor suppressor and oncogenic activities. Cell Cycle 5:1929–1935

    PubMed  CAS  Google Scholar 

  138. Reddy BY, Greco SJ, Patel PS, Trzaska KA, Rameshwar P (2009) RE-1-Çosilencing transcription factor shows tumor-suppressor functions and negatively regulates the oncogenic TAC1 in breast cancer cells. Proc Natl Acad Sci USA 106:4408–4413

    PubMed  CAS  Google Scholar 

  139. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427

    PubMed  CAS  Google Scholar 

  140. Kim SM, Yang JW, Park MJ, Lee JK, Kim SU, Lee YS, Lee MA (2006) Regulation of human tyrosine hydroxylase gene by neuron-restrictive silencer factor. Biochem Biophys Res Commun 346:426–435

    PubMed  CAS  Google Scholar 

  141. Berg JS, Goodell MA (2007) An argument against a role for Oct4 in somatic stem cells. Cell Stem Cell 1:359–360

    PubMed  CAS  Google Scholar 

  142. Lengner CJ, Welstead GG, Jaenisch R (2008) The pluripotency regulator Oct4: a role in somatic stem cells? Cell Cycle 7:725–728

    PubMed  CAS  Google Scholar 

  143. Saxe JP, Tomilin A, Scholer HR, Plath K, Huang J (2009) Post-translational regulation of Oct4 transcriptional activity. PLoS One 4:e4467

    PubMed  Google Scholar 

  144. Ji KH, Xiong J, Hu KM, Fan LX, Liu HQ (2008) Simultaneous expression of Oct4 and genes of three germ layers in single cell-derived multipotent adult progenitor cells. Ann Hematol 87:431–438

    PubMed  CAS  Google Scholar 

  145. Liedtke S, Stephan M, Kogler G (2008) Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol Chem 389:845–850

    PubMed  CAS  Google Scholar 

  146. Tweedell KS (2008) New paths to pluripotent stem cells. Curr Stem Cell Res Ther 3:151–162

    PubMed  CAS  Google Scholar 

  147. Karoubi G, Gugger M, Schmid R, Dutly A (2009) OCT4 expression in human non-small cell lung cancer: implications for therapeutic intervention. Interact Cardiovasc Thorac Surg 8:393–397

    PubMed  Google Scholar 

  148. Sotomayor P, Godoy A, Smith GJ, Huss WJ (2009) Oct4A is expressed by a subpopulation of prostate neuroendocrine cells. Prostate 69:401–410

    PubMed  CAS  Google Scholar 

  149. Levings PP, McGarry SV, Currie TP, Nickerson DM, McClellan S, Ghivizzani SC, Steindler DA, Gibbs CP (2009) Expression of an exogenous human Oct-4 promoter identifies tumor-initiating cells in osteosarcoma. Cancer Res 69:5648–5655

    PubMed  CAS  Google Scholar 

  150. Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S (2008) Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68:6533–6540

    PubMed  CAS  Google Scholar 

  151. Perrier AL, Studer L (2003) Making and repairing the mammalian brain—in vitro production of dopaminergic neurons. Semin Cell Dev Biol 14:181–189

    PubMed  CAS  Google Scholar 

  152. Lange KW, Mecklinger L, Walitza S, Becker G, Gerlach M, Naumann M, Tucha O (2006) Brain dopamine and kinematics of graphomotor functions. Hum Mov Sci 25:492–509

    PubMed  Google Scholar 

  153. Trzaska KA, Rameshwar P (2007) Current advances in the treatment of Parkinson’s disease with stem cells. Curr Neurovasc Res 4:99–109

    PubMed  CAS  Google Scholar 

  154. Shigetomi S, Fukuchi S (1994) Recent aspect of the role of peripheral dopamine and its receptors in the pathogenesis of hypertension. Fukushima J Med Sci 40:69–83

    PubMed  CAS  Google Scholar 

  155. Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208:1–25

    PubMed  CAS  Google Scholar 

  156. Sanberg PR (2007) Neural stem cells for Parkinson’s disease: to protect and repair. Proc Natl Acad Sci USA 104:11869–11870

    PubMed  CAS  Google Scholar 

  157. Gregory CA, Ylostalo J, Prockop DJ (2005) Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental “Niches” in culture: a two-stage hypothesis for regulation of MSC fate. Sci STKE 2005:e37

    Google Scholar 

  158. Honma T, Honmou O, Iihoshi S, Harada K, Houkin K, Hamada H, Kocsis JD (2006) Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol 199:56–66

    PubMed  CAS  Google Scholar 

  159. Shyu WC, Lee YJ, Liu DD, Lin SZ, Li H (2006) Homing genes, cell therapy and stroke. Front Biosci 11:899–907

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant awarded by F.M. Kirby Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranela Rameshwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rameshwar, P. (2012). Current Thoughts on the Therapeutic Potential of Stem Cell. In: Singh, S. (eds) Somatic Stem Cells. Methods in Molecular Biology, vol 879. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-815-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-815-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-814-6

  • Online ISBN: 978-1-61779-815-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics