Skip to main content

DNA Sequencing by Nanopore-Induced Photon Emission

  • Protocol
  • First Online:
Nanopore-Based Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 870))

Abstract

Nanopore-based DNA analysis is an extremely attractive area of research due to the simplicity of the method, and the ability to not only probe individual molecules, but also to detect very small amounts of genomic material. Here, we describe the materials and methods of a novel, nanopore-based, single-molecule DNA sequencing system that utilizes optical detection. We convert target DNA according to a binary code, which is recognized by molecular beacons with two types of fluorophores. Solid-state nanopores are then used to sequentially strip off the beacons, leading to a series of photon bursts that can be detected with a custom-made microscope. We do not use any enzymes in the readout stage; thus, our system is not limited by the highly variable processivity, lifetime, and inaccuracy of individual enzymes that can hinder throughput and reliability. Furthermore, because our system uses purely optical readout, we can take advantage of high-end, wide-field imaging devices to record from multiple nanopores simultaneously. This allows an extremely straightforward parallelization of our system to nanopore arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 5910:133–138

    Article  Google Scholar 

  2. Fuller CW, Middendorf LR, Benner SA et al (2009) The challenges of sequencing by synthesis. Nat Biotechnol 11:1013–1023

    Article  Google Scholar 

  3. Harris TD, Buzby PR, Babcock H et al (2008) Single-molecule DNA sequencing of a viral genome. Science 5872:106–109

    Article  Google Scholar 

  4. Shendure J, Mitra RD, Varma C et al (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5:335–344

    Article  CAS  Google Scholar 

  5. Wanunu M, Sutin J, Meller A (2009) DNA profiling using solid-state nanopores: detection of DNA-binding molecules. Nano Lett 10: 3498–3502

    Article  Google Scholar 

  6. Deamer DW, Branton D (2002) Characterization of nucleic acids by nanopore analysis. Acc Chem Res 10:817–825

    Article  Google Scholar 

  7. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 4:209–215

    Article  Google Scholar 

  8. Healy K (2007) Nanopore-based single-molecule DNA analysis. Nanomedicine 4:459–481

    Article  Google Scholar 

  9. Li J, Stein D, McMullan C et al (2001) Ion-beam sculpting at nanometre length scales. Nature 6843:166–169

    Article  Google Scholar 

  10. Liu H, He J, Tang J et al (2010) Translocation of single-stranded DNA Through single-walled carbon nanotubes. Science 5961:64–67

    Article  Google Scholar 

  11. Singer A, Wanunu M, Morrison W et al (2010) Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett 2:738–742

    Article  Google Scholar 

  12. Wanunu M, Morrison W, Rabin Y et al (2010) Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol 2:160–165

    Article  Google Scholar 

  13. Wanunu M, Sutin J, McNally B et al (2008) DNA translocation governed by interactions with solid-state nanopores. Biophys J 10: 4716–4725

    Article  Google Scholar 

  14. Chansin GAT, Mulero R, Hong J et al (2007) Single-molecule spectroscopy using nanoporous membranes. Nano Lett 9:2901–2906

    Article  Google Scholar 

  15. Chen Z, Jiang YB, Dunphy DR et al (2010) DNA translocation through an array of kinked nanopores. Nat Mater 8:667–675

    Article  Google Scholar 

  16. Mussi V, Fanzio P, Repetto L et al (2009) Solid state nanopores for gene expression profiling. Superlattice Microst 1–2:59–63

    Article  Google Scholar 

  17. Prabhu AS, Jubery TZN, Freedman KJ et al (2010) Chemically modified solid state nanopores for high throughput nanoparticle separation. J Phys Condens Matter 22(45):454107

    Article  Google Scholar 

  18. Akeson M, Branton D, Kasianowicz JJ et al (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 6:3227–3233

    Article  Google Scholar 

  19. Kasianowicz JJ, Brandin E, Branton D et al (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 24:13770–13773

    Article  Google Scholar 

  20. Meller A (2003) Dynamics of polynucleotide transport through nanometre-scale pores. J Phys Condens Matter 17:R581–R607

    Article  Google Scholar 

  21. Meller A, Nivon L, Branton D (2001) Voltage-driven DNA translocations through a nanopore. Phys Rev Lett 15:3435–3438

    Article  Google Scholar 

  22. Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 10:1146–1153

    Article  Google Scholar 

  23. Clarke J, Wu HC, Jayasinghe L et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    Article  CAS  Google Scholar 

  24. Derrington IM, Butler TZ, Collins MD et al (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci USA 37: 16060–16065

    Article  Google Scholar 

  25. Vercoutere W, Akeson M (2002) Biosensors for DNA sequence detection. Curr Opin Chem Biol 6:816–822

    Article  CAS  Google Scholar 

  26. Soni GV, Singer A, Yu Z et al (2010) Synchronous optical and electrical detection of biomolecules traversing through solid-state nanopores. Rev Sci Instrum 1: 014301–014307

    Article  Google Scholar 

  27. McNally B, Singer A, Yu Z et al (2010) Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett 6:2237–2244

    Article  Google Scholar 

  28. Lo CJ, Aref T, Bezryadin A (2006) Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 13: 3264–3267

    Article  Google Scholar 

  29. Mitsui T, Stein D, Kim YR et al (2006) Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores. Phys Rev Lett 96(3):036102

    Article  Google Scholar 

  30. Schiedt B, Auvray L, Bacri L et al (2010) Direct FIB fabrication and integration of “single nanopore devices” for the manipulation of macromolecules. Microelectron Eng 5–8:1300–1303

    Article  Google Scholar 

  31. Kim MJ, Wanunu M, Bell DC et al (2006) Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv Mater 18(23):3149–3153

    Article  CAS  Google Scholar 

  32. Storm AJ, Chen JH, Ling XS et al (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 8:537–540

    Article  Google Scholar 

  33. Kim MJ, McNally B, Murata K et al (2007) Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 18(20):205302

    Article  Google Scholar 

  34. Chen P, Mitsui T, Farmer DB et al (2004) Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett 7:1333–1337

    Article  Google Scholar 

  35. Jakschik S, Schroeder U, Hecht T et al (2003) Physical characterization of thin ALD-Al2O3 films. Appl Surf Sci 1–4:352–359

    Article  Google Scholar 

  36. Venkatesan BM, Dorvel B, Yemenicioglu S et al (2009) Highly sensitive, mechanically ­stable nanopore sensors for DNA analysis. Adv Mater 21(27):2771

    Article  CAS  Google Scholar 

  37. Tong HD, Jansen HV, Gadgil VJ et al (2004) Silicon nitride nanosieve membrane. Nano Lett 2:283–287

    Article  Google Scholar 

  38. Axelrod D (1981) Cell-substrate contacts illuminated by total internal-reflection fluorescence. J Cell Biol 1:141–145

    Article  Google Scholar 

  39. Wanunu M, Meller A (2008) Single molecule analysis of nucleic acids and DNA-protein interactions using nanopores. In: Selvin P, Ha T (eds) Laboratory manual on single molecules. Cold Spring Harbor, New York

    Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from NIH awards HG-004128 and HG-005871, and support from Harvard University’s Center for Nanoscale Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Meller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Singer, A., McNally, B., Torre, R.D., Meller, A. (2012). DNA Sequencing by Nanopore-Induced Photon Emission. In: Gracheva, M. (eds) Nanopore-Based Technology. Methods in Molecular Biology, vol 870. Humana Press. https://doi.org/10.1007/978-1-61779-773-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-773-6_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-772-9

  • Online ISBN: 978-1-61779-773-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics