Skip to main content

Epigenome and DNA Methylation in Oral Squamous Cell Carcinoma

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 863))

Abstract

Epigenetics studies and defines inherited changes in gene expression that are not encoded in the DNA sequence. The most studied epigenetic change in mammalian DNA is cytosine methylation in CpG dinucleotide areas. The other main group in epigenetic changes includes the posttranslational modifications of histones, mainly phosphorylation, deacetylation changes, and in the ubiquitinylation status. Oral squamous cell carcinoma is the most common malignancy of the oral cavity, and epigenetic changes are very common, as described in this chapter. Alterations in the DNA methylation status resulting from exposure to environmental stress agents have been documented even before birth. Although many epigenetic markers are potentially reversible, the mechanism still remains unclear and many epigenetic changes persist across cell lines and the life of the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Gao, J. Worm, P. Guldberg, H. Eiberg, A. Krogdahl, C. J. Liu, J. Reibel, and E. Dabelsteen, (2004) Genetic and epigenetic alterations of the blood group ABO gene in oral squamous cell carcinoma. Int J Cancer 109, 230–237.

    Article  PubMed  CAS  Google Scholar 

  2. M. Perez-Sayans, J. M. Somoza-Martin, F. Barros-Angueira, M. D. Reboiras-Lopez, J. M. Gandara Rey, and A. Garcia-Garcia (2009) Genetic and molecular alterations associated with oral squamous cell cancer (review). Oncol Rep 22, 1277–1282.

    Article  PubMed  CAS  Google Scholar 

  3. A. Bird, (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16, 6-21.

    Article  PubMed  CAS  Google Scholar 

  4. T. Vaissiere, C. Sawan, and Z. Herceg (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659, 40–48.

    Article  PubMed  CAS  Google Scholar 

  5. J. Murakami, J. Asaumi, Y. Maki, et al (2004) Influence of CpG island methylation status in O6-methylguanine-DNA methyltransferase expression of oral cancer cell lines. Oncol Rep 12, 339–345.

    PubMed  CAS  Google Scholar 

  6. C. J. Piyathilake, W. C. Bell, J. Jones, O. L. Henao, D. C. Heimburger, A. Niveleau, and W. E. Grizzle (2005) Patterns of global DNA and histone methylation appear to be similar in normal, dysplastic and neoplastic oral epithelium of humans. Dis Markers 21, 147–151.

    Article  PubMed  CAS  Google Scholar 

  7. F. Larsen, G. Gundersen, R. Lopez, and H. Prydz (1992) CpG islands as gene markers in the human genome. Genomics 13, 1095–1107.

    Article  PubMed  CAS  Google Scholar 

  8. P. K. Ha and J. A. Califano (2006) Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol 7, 77–82.

    Article  PubMed  CAS  Google Scholar 

  9. K. Gronbaek, C. Hother, and P. A. Jones (2007) Epigenetic changes in cancer. APMIS 115, 1039–1059.

    Article  PubMed  Google Scholar 

  10. A. T. Hark, C. J. Schoenherr, D. J. Katz, R. S. Ingram, J. M. Levorse, and S. M. Tilghman (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489.

    Article  PubMed  CAS  Google Scholar 

  11. J. Murakami, J. Asaumi, N. Kawai, et al (2005) Effects of histone deacetylase inhibitor FR901228 on the expression level of telomerase reverse transcriptase in oral cancer, Cancer Chemother Pharmacol 56, 22–28.

    Article  PubMed  CAS  Google Scholar 

  12. A. P. Bird and A. P. Wolffe (1999) Methylation-induced repression--belts, braces, and chromatin. Cell 99, 451–454.

    Article  PubMed  CAS  Google Scholar 

  13. A. P. Feinberg (2001) Cancer epigenetics takes center stage. Proc Natl Acad Sci USA 98, 392–394.

    Article  PubMed  CAS  Google Scholar 

  14. M. Mancuso, D. S. Matassa, M. Conte, G. Colella, G. Rana, L. Fucci, and M. Piscopo (2009) H3K4 histone methylation in oral squamous cell carcinoma. Acta Biochim Pol 56, 405–410.

    PubMed  CAS  Google Scholar 

  15. E. A. Vucic, C. J. Brown, and W. L. Lam (2008) Epigenetics of cancer progression. Pharmacogenomics 9, 215–234.

    Article  PubMed  CAS  Google Scholar 

  16. R. L. Momparler and V. Bovenzi (2000) DNA methylation and cancer. J Cell Physiol 183, 145–154.

    Article  PubMed  CAS  Google Scholar 

  17. M. Cruz-Correa, H. Cui, F. M. Giardiello, et al (2004) Loss of imprinting of insulin growth factor II gene: A potential heritable biomarker for colon neoplasia predisposition. Gastroenterology 126, 964–970.

    Article  PubMed  CAS  Google Scholar 

  18. X. Wu, H. Zhao, R. Suk, and D. C. Christiani (2004) Genetic susceptibility to tobacco-related cancer. Oncogene 23, 6500-6523.

    Article  PubMed  CAS  Google Scholar 

  19. D. Hanahan and R. A. Weinberg (2000) The hallmarks of cancer. Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  20. S. Choi and J. N. Myers (2008) Molecular pathogenesis of oral squamous cell carcinoma: Implications for therapy. J Dent Res 87, 14–32.

    Article  PubMed  CAS  Google Scholar 

  21. A. K. El-Naggar, S. Lai, G. Clayman, J. K. Lee, M. A. Luna, H. Goepfert, and J. G. (1997) Batsakis, Methylation, a major mechanism of p16/CDKN2 gene inactivation in head and neck squamous carcinoma. Am J Pathol 151, 1767–1774.

    Google Scholar 

  22. R. Sailasree, A. Abhilash, K. M. Sathyan, K. R. Nalinakumari, S. Thomas, and S. Kannan. (2008) Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiol Biomarkers Prev 17, 414–420.

    Article  PubMed  CAS  Google Scholar 

  23. R. J. Shaw, T. Liloglou, S. N. Rogers, J. S. Brown, E. D. Vaughan, D. Lowe, J. K. Field, and J. M. Risk (2006) Promoter methylation of P16, RARbeta, E-cadherin, cyclin A1 and cytoglobin in oral cancer: Quantitative evaluation using pyrosequencing, Br J Cancer 94. 561–568.

    Article  PubMed  CAS  Google Scholar 

  24. C. Motsch, A. Giers, C. Boltze, M. Evert, B. Freigang, A. Roessner, and R. Schneider-Stock (2004) Biallelic inactivation of the p16-gen in a metachronous triple carcinoma in the oropharyngeal region. Laryngorhinootologie 83, 55–60.

    Article  PubMed  CAS  Google Scholar 

  25. S. Shintani, Y. Nakahara, M. Mihara, Y. Ueyama, and T. Matsumura (2001) Inactivation of the p14(ARF), p15(INK4B) and p16(INK4A) genes is a frequent event in human oral squamous cell carcinomas. Oral Oncol 37, 498–504.

    Article  PubMed  CAS  Google Scholar 

  26. K. Ogi, M. Toyota, M. Ohe-Toyota, N. Tanaka, M. Noguchi, T. Sonoda, G. Kohama, and T. Tokino (2002) Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. Clin Cancer Res 8, 3164–3171.

    PubMed  CAS  Google Scholar 

  27. S. Maruya, J. P. Issa, R. S. Weber, D. I. Rosenthal, J. C. Haviland, R. Lotan, and A. K. El-Naggar (2004) Differential methylation status of tumor-associated genes in head and neck squamous carcinoma: Incidence and potential implications. Clin Cancer Res 10, 3825–3830.

    Article  PubMed  CAS  Google Scholar 

  28. M. Gasco, A. K. Bell, V. Heath, et al (2002) Epigenetic inactivation of 14-3-3 sigma in oral carcinoma: Association with p16(INK4a) silencing and human papillomavirus negativity. Cancer Res 62, 2072–2076.

    PubMed  CAS  Google Scholar 

  29. T. Daa, K. Kashima, Y. Kondo, N. Yada, M. Suzuki, and S. Yokoyama (2008) Aberrant methylation in promoter regions of cyclin-dependent kinase inhibitor genes in adenoid cystic carcinoma of the salivary gland. APMIS 116, 21–26.

    Article  PubMed  CAS  Google Scholar 

  30. M. J. Huang, K. T. Yeh, H. C. Shih, Y. F. Wang, T. H. Lin, J. Y. Chang, M. C. Shih, and J. G. Chang (2002) The correlation between CpG methylation and protein expression of P16 in oral squamous cell carcinomas. Int J Mol Med 10, 551–554.

    PubMed  Google Scholar 

  31. S. Ohta, H. Uemura, Y. Matsui, et al (2009) Alterations of p16 and p14ARF genes and their 9p21 locus in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107, 81–91.

    Article  PubMed  Google Scholar 

  32. M. A. Gonzalez-Moles, J. A. Gil-Montoya, I. Ruiz-Avila, F. Esteban, M. Delgado-Rodriguez, and A. Bascones-Martinez (2007) Prognostic significance of p21WAF1/CIP1, p16INK4a and CD44s in tongue cancer. Oncol Rep 18, 389–396.

    PubMed  CAS  Google Scholar 

  33. U. K. Bhawal, K. Tsukinoki, T. Sasahira, F. Sato, Y. Mori, N. Muto, M. Sugiyama, and H. Kuniyasu (2007) Methylation and intratumoural heterogeneity of 14-3-3 sigma in oral cancer. Oncol Rep 18, 817–824.

    PubMed  CAS  Google Scholar 

  34. S. M. Dong, D. I. Sun, N. E. Benoit, I. Kuzmin, M. I. Lerman, and D. Sidransky, (2003). Epigenetic inactivation of RASSF1A in head and neck cancer, Clin Cancer Res 9, 3635–3640.

    PubMed  CAS  Google Scholar 

  35. K. H. Huang, S. F. Huang, I. H. Chen, C. T. Liao, H. M. Wang, and L. L. Hsieh (2009) Methylation of RASSF1A, RASSF2A, and HIN-1 is associated with poor outcome after radiotherapy, but not surgery, in oral squamous cell carcinoma. Clin Cancer Res 15, 4174–4180.

    Article  PubMed  CAS  Google Scholar 

  36. T. N. Tran, Y. Liu, M. Takagi, A. Yamaguchi, and H. Fujii (2005) Frequent promoter hypermethylation of RASSF1A and p16INK4a and infrequent allelic loss other than 9p21 in betel-associated oral carcinoma in a vietnamese non-smoking/non-drinking female population. J Oral Pathol Med 34, 150–156.

    Article  PubMed  CAS  Google Scholar 

  37. T. Imai, M. Toyota, H. Suzuki, et al (2008) Epigenetic inactivation of RASSF2 in oral squamous cell carcinoma. Cancer Sci 99, 958–966.

    Article  PubMed  CAS  Google Scholar 

  38. M. Nishimine, M. Nakamura, M. Kishi, M. Okamoto, K. Shimada, E. Ishida, T. Kirita, and N. Konishi (2003) Alterations of p14ARF and p16INK4a genes in salivary gland carcinomas. Oncol Rep 10, 555–560.

    PubMed  CAS  Google Scholar 

  39. C. A. Righini, F. de Fraipont, E. Reyt, and M. C. Favrot (2007) Aberrant methylation of tumor suppressor genes in head and neck squamous cell carcinoma: Is it clinically relevant? Bull Cancer 94, 191–197.

    PubMed  CAS  Google Scholar 

  40. V. Kulkarni and D. Saranath (2004) Concurrent hypermethylation of multiple regulatory genes in chewing tobacco associated oral squamous cell carcinomas and adjacent normal tissues. Oral Oncol 40, 145–153.

    Article  PubMed  CAS  Google Scholar 

  41. K. T. Yeh, J. G. Chang, T. H. Lin, Y. F. Wang, N. Tien, J. Y. Chang, J. C. Chen, and M. C. Shih (2003) Epigenetic changes of tumor suppressor genes, P15, P16, VHL and P53 in oral cancer. Oncol Rep 10, 659–663.

    PubMed  CAS  Google Scholar 

  42. S. Nakayama, A. Sasaki, H. Mese, R. E. Alcalde, T. Tsuji, and T. Matsumura (2001) The E-cadherin gene is silenced by CpG methylation in human oral squamous cell carcinomas. Int J Cancer 93, 667–673.

    Article  PubMed  CAS  Google Scholar 

  43. Y. Saito, H. Takazawa, K. Uzawa, H. Tanzawa, and K. Sato (1998) Reduced expression of E-cadherin in oral squamous cell carcinoma: Relationship with DNA methylation of 5′ CpG island. Int J Oncol 12, 293–298.

    PubMed  CAS  Google Scholar 

  44. H. W. Chang, V. Chow, K. Y. Lam, W. I. Wei, and A. Yuen (2002) Loss of E-cadherin expression resulting from promoter hypermethylation in oral tongue carcinoma and its prognostic significance. Cancer 94, 386–392.

    Article  PubMed  CAS  Google Scholar 

  45. G. Maeda, T. Chiba, T. Aoba, and K. Imai (2007) Epigenetic inactivation of E-cadherin by promoter hypermethylation in oral carcinoma cells. Odontology 95, 24–29.

    Article  PubMed  CAS  Google Scholar 

  46. R. V. de Moraes, D. T. Oliveira, G. Landman, F. de Carvalho, O. Caballero, S. Nonogaki, I. Nishimoto, and L. P. Kowalski (2008) E-cadherin abnormalities resulting from CPG methylation promoter in metastatic and nonmetastatic oral cancer. Head Neck 30, 85–92.

    Article  PubMed  Google Scholar 

  47. S. Gao, E. P. Bennett, J. Reibel, X. Chen, M. E. Christensen, A. Krogdahl, and E. Dabelsteen (2004) Histo-blood group ABO antigen in oral potentially malignant lesions and squamous cell carcinoma--genotypic and phenotypic characterization. APMIS 112, 11–20.

    Article  PubMed  Google Scholar 

  48. G. Maeda, T. Chiba, S. Kawashiri, T. Satoh, and K. Imai (2007) Epigenetic inactivation of IkappaB kinase-alpha in oral carcinomas and tumor progression. Clin Cancer Res 13, 5041–5047.

    Article  PubMed  CAS  Google Scholar 

  49. S. Ogane, T. Onda, N. Takano, T. Yajima, T. Uchiyama, and T. Shibahara (2009) Spleen tyrosine kinase as a novel candidate tumor suppressor gene for human oral squamous cell carcinoma. Int J Cancer 124, 2651–2657.

    Article  PubMed  CAS  Google Scholar 

  50. K. Liu, H. Huang, P. Mukunyadzi, J. Y. Suen, E. Hanna, and C. Y. Fan (2002) Promoter hypermethylation: An important epigenetic mechanism for hMLH1 gene inactivation in head and neck squamous cell carcinoma. Otolaryngol Head Neck Surg 126, 548–553.

    Article  PubMed  Google Scholar 

  51. M. Viswanathan, N. Tsuchida, and G. Shanmugam (2003) Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. Int J Cancer 105, 41–46.

    Article  PubMed  CAS  Google Scholar 

  52. S. L. Rosas, W. Koch, M. G. da Costa Carvalho, L. Wu, J. Califano, W. Westra, J. Jen, and D. Sidransky (2001) Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res 61, 939–942.

    PubMed  CAS  Google Scholar 

  53. C. Zuo, L. Ai, P. Ratliff, J. Y. Suen, E. Hanna, T. P. Brent, and C. Y. Fan (2004) O6-methylguanine-DNA methyltransferase gene: Epigenetic silencing and prognostic value in head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 13, 967–975.

    PubMed  CAS  Google Scholar 

  54. F. Aniello, G. Colella, G. Muscariello, A. Lanza, D. Ferrara, M. Branno, and S. Minucci (2006) Expression of four histone lysine-methyltransferases in parotid gland tumors. Anticancer Res 26, 2063–2067.

    PubMed  CAS  Google Scholar 

  55. S. Mitra, S. Banerjee, C. Misra, R. K. Singh, A. Roy, A. Sengupta, C. K. Panda, and S. Roychoudhury (2007) Interplay between human papilloma virus infection and p53 gene alterations in head and neck squamous cell carcinoma of an Indian patient population. J Clin Pathol 60, 1040–1047.

    Article  PubMed  CAS  Google Scholar 

  56. L. Ai, Q. N. Vo, C. Zuo, L. Li, W. Ling, J. Y. Suen, E. Hanna, K. D. Brown, and C. Y. Fan (2004) Ataxia-telangiectasia-mutated (ATM) gene in head and neck squamous cell carcinoma: Promoter hypermethylation with clinical correlation in 100 cases. Cancer Epidemiol Biomarkers Prev 13, 150–156.

    Article  PubMed  CAS  Google Scholar 

  57. M. Esteller, P. G. Corn, S. B. Baylin, and J. G. Herman (2001) A gene hypermethylation profile of human cancer. Cancer Res 61, 3225–3229.

    PubMed  CAS  Google Scholar 

  58. M. Sanchez-Cespedes, M. Esteller, L. Wu, H. Nawroz-Danish, G. H. Yoo, W. M. Koch, J. Jen, J. G. Herman, and D. Sidransky (2000) Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res 60, 892–895.

    PubMed  CAS  Google Scholar 

  59. J. B. Engel, A. V. Schally, G. Halmos, B. Baker, A. Nagy, and G. Keller (2005) Targeted therapy with a cytotoxic somatostatin analog, AN-238, inhibits growth of human experimental endometrial carcinomas expressing multidrug resistance protein MDR-1. Cancer 104, 1312–1321.

    Article  PubMed  CAS  Google Scholar 

  60. M. Koshiyama, H. Fujii, M. Kinezaki, Y. Morita, H. Nanno, and M. Yoshida (2001) Immunohistochemical expression of topoisomerase IIalpha (topo IIalpha) and multidrug resistance-associated protein (MRP), plus chemosensitivity testing, as chemotherapeutic indices of ovarian and endometrial carcinomas. Anticancer Res 21, 2925–2932.

    PubMed  CAS  Google Scholar 

  61. M. Perez-Sayans, J. M. Somoza-Martin, F. Barros-Angueira, P. G. Diz, J. M. Rey, and A. Garcia-Garcia (2010) Multidrug resistance in oral squamous cell carcinoma: The role of vacuolar ATPases. Cancer Lett 295, 135–43

    Article  PubMed  CAS  Google Scholar 

  62. R. Shaw (2006) The epigenetics of oral cancer. Int J Oral Maxillofac Surg 35, 101-108.

    Article  PubMed  CAS  Google Scholar 

  63. M. Toyota, C. Ho, N. Ahuja, K. W. Jair, Q. Li, M. Ohe-Toyota, S. B. Baylin, and J. P. Issa (1999) Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59, 2307–2312.

    PubMed  CAS  Google Scholar 

  64. K. Saito, K. Uzawa, Y. Endo, Y. Kato, D. Nakashima, K. Ogawara, M. Shiba, H. Bukawa, H. Yokoe, and H. Tanzawa (2006) Plasma membrane Ca2+ ATPase isoform 1 down-regulated in human oral cancer. Oncol Rep 15, 49–55.

    PubMed  CAS  Google Scholar 

  65. T. Onda, K. Uzawa, Y. Endo, H. Bukawa, H. Yokoe, T. Shibahara, and H. Tanzawa (2006) Ubiquitous mitochondrial creatine kinase downregulated in oral squamous cell carcinoma. Br J Cancer 94, 698–709.

    PubMed  CAS  Google Scholar 

  66. T. Nakagawa, A. Pimkhaokham, E. Suzuki, K. Omura, J. Inazawa, and I. Imoto (2006) Genetic or epigenetic silencing of low density lipoprotein receptor-related protein 1B expression in oral squamous cell carcinoma. Cancer Sci 97, 1070–1074.

    Article  PubMed  CAS  Google Scholar 

  67. E. Suzuki, I. Imoto, A. Pimkhaokham, T. Nakagawa, N. Kamata, K. I. Kozaki, T. Amagasa, and J. Inazawa (2007) PRTFDC1, a possible tumor-suppressor gene, is frequently silenced in oral squamous-cell carcinomas by aberrant promoter hypermethylation. Oncogene 26, 7921–7932.

    Article  PubMed  CAS  Google Scholar 

  68. E. Nakamura, K. Kozaki, H. Tsuda, et al (2008) Frequent silencing of a putative tumor suppressor gene melatonin receptor 1 A (MTNR1A) in oral squamous-cell carcinoma. Cancer Sci 99, 1390–1400.

    Article  PubMed  CAS  Google Scholar 

  69. Y. Kurasawa, M. Shiiba, M. Nakamura, K. Fushimi, T. Ishigami, H. Bukawa, H. Yokoe, K. Uzawa, and H. Tanzawa (2008) PTEN expression and methylation status in oral squa-mous cell carcinoma. Oncol Rep 19, 1429–1434.

    PubMed  CAS  Google Scholar 

  70. Y. Sogabe, H. Suzuki, M. Toyota, K. Ogi, T. Imai, M. Nojima, Y. Sasaki, H. Hiratsuka, and T. Tokino (2008) Epigenetic inactivation of SFRP genes in oral squamous cell carcinoma. Int J Oncol 32, 1253–1261.

    PubMed  CAS  Google Scholar 

  71. F. Gao, C. Huang, M. Lin, Z. Wang, J. Shen, H. Zhang, L. Jiang, and Q. Chen (2009) Frequent inactivation of RUNX3 by promoter hypermethylation and protein mislocalization in oral squamous cell carcinomas. J Cancer Res Clin Oncol 135, 739–747.

    Article  PubMed  CAS  Google Scholar 

  72. A. Negishi, M. Masuda, M. Ono, et al (2009) Quantitative proteomics using formalin-fixed paraffin-embedded tissues of oral squamous cell carcinoma. Cancer Sci 100, 1605–1611.

    Article  PubMed  CAS  Google Scholar 

  73. T. Chiba, G. Maeda, S. Kawashiri, K. Kato, and K. Imai (2009) Epigenetic loss of mucosa-associated lymphoid tissue 1 expression in patients with oral carcinomas. Cancer Res 69, 7216–7223.

    Article  PubMed  CAS  Google Scholar 

  74. S. Gao, B. S. Nielsen, A. Krogdahl, J. A. Sorensen, J. Tagesen, S. Dabelsteen, E. Dabelsteen, and P. A. Andreasen (2010) Epigenetic alterations of the SERPINE1 gene in oral squamous cell carcinomas and normal oral mucosa. Genes Chromosomes Cancer 49, 526–538.

    PubMed  CAS  Google Scholar 

  75. T. M. Richter, B. D. Tong, and S. B. Scholnick (2005) Epigenetic inactivation and aberrant transcription of CSMD1 in squamous cell carcinoma cell lines. Cancer Cell Int 5, 29.

    Article  PubMed  CAS  Google Scholar 

  76. S. A. Leon, G. E. Ehrlich, B. Shapiro, and V. A. Labbate (1977) Free DNA in the serum of rheumatoid arthritis patients. J Rheumatol 4, 139–143.

    PubMed  CAS  Google Scholar 

  77. B. Shapiro, M. Chakrabarty, E. M. Cohn, and S. A. Leon (1983) Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer 51, 2116–2120.

    Article  PubMed  CAS  Google Scholar 

  78. A. Ziegler, U. Zangemeister-Wittke, and R. A. Stahel (2002) Circulating DNA: A new diagnostic gold mine? Cancer Treat Rev 28, 255–271.

    Article  PubMed  CAS  Google Scholar 

  79. M. Lopez, J. M. Aguirre, N. Cuevas, M. Anzola, J. Videgain, J. Aguirregaviria, and M. Martinez de Pancorbo (2003) Gene promoter hypermethylation in oral rinses of leukoplakia patients--a diagnostic and/or prognostic tool? Eur J Cancer 39, 2306–2309.

    Article  PubMed  CAS  Google Scholar 

  80. M. M. Coombes, K. L. Briggs, J. R. Bone, G. L. Clayman, A. K. El-Naggar, and S. Y. Dent (2003) Resetting the histone code at CDKN2A in HNSCC by inhibition of DNA methylation, Oncogene 22, 8902–8911.

    Article  PubMed  CAS  Google Scholar 

  81. M. Daskalakis, T. T. Nguyen, C. Nguyen, P. Guldberg, G. Kohler, P. Wijermans, P. A. Jones, and M. Lubbert (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2′-deoxycytidine (decitabine) treatment. Blood 100, 2957–2964.

    Article  PubMed  CAS  Google Scholar 

  82. J. Gilbert, S. D. Gore, J. G. Herman, and M. A. Carducci (2004) The clinical application of targeting cancer through histone acetylation and hypomethylation. Clin Cancer Res 10, 4589–4596.

    Article  PubMed  CAS  Google Scholar 

  83. J. L. Marshall, N. Rizvi, J. Kauh, et al (2002) A phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J Exp Ther Oncol 2, 325–332.

    Article  PubMed  CAS  Google Scholar 

  84. V. Sandor, S. Bakke, R. W. Robey, et al (2002) Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res 8, 718–728.

    PubMed  CAS  Google Scholar 

  85. A. D. Donald, V. L. Clark, S. Patel, et al (2010) Design and synthesis of novel pyrimidine hydroxamic acid inhibitors of histone deacetylases. Bioorg Med Chem Lett 20, 6657–6660.

    Article  PubMed  CAS  Google Scholar 

  86. H. C. Yoon, E. Choi, J. E. Park, et al (2010) Property based optimization of delta-lactam HDAC inhibitors for metabolic stability. Bioorg Med Chem Lett 20, 6808–6811.

    Article  PubMed  CAS  Google Scholar 

  87. J. Kim, J. Guan, I. Chang, X. Chen, D. Han, and C. Y. Wang (2010) PS-341 and histone deacetylase inhibitor synergistically induce apoptosis in head and neck squamous cell carcinoma cells. Mol Cancer Ther 9, 1977–1984.

    Article  PubMed  CAS  Google Scholar 

  88. M. Nishimine, N. Konishi, K. Yamamoto, H. Nagai, M. Emi, T. Kirita, and M. Sugimura (2000) Epigenetic alterations in methylation in oral squamous cell carcinoma cell lines detected by two-dimensional gel electrophoresis. Int J Oncol 17, 743–747.

    PubMed  CAS  Google Scholar 

  89. D. J. Smiraglia, L. T. Smith, J. C. Lang, L. J. Rush, Z. Dai, D. E. Schuller, and C. Plass (2003). Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC). J Med Genet 40, 25–33.

    Article  PubMed  CAS  Google Scholar 

  90. S. Choudhuri, Y. Cui, and C. D. Klaassen (2010) Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicol Appl Pharmacol 245, 378–393.

    Article  PubMed  CAS  Google Scholar 

  91. A. P. Feinberg (2008) Epigenetics at the epicenter of modern medicine. JAMA 299, 1345–1350.

    Article  PubMed  CAS  Google Scholar 

  92. M. F. Fraga, E. Ballestar, A. Villar-Garea, et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37, 391–400.

    Article  PubMed  CAS  Google Scholar 

  93. T. Ryba, I. Hiratani, J. Lu, M. Itoh, M. Kulik, J. Zhang, T. C. Schulz, A. J. Robins, S. Dalton, and D. M. Gilbert (2010) Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20, 761–770.

    Article  PubMed  CAS  Google Scholar 

  94. N. M. Boyd and P. C. Reade (1988) Differences between preneoplastic cells, neoplastic cells and their normal counterparts. J Oral Pathol 17, 257–265.

    Article  PubMed  CAS  Google Scholar 

  95. B. C. Richardson (2002) Role of DNA methylation in the regulation of cell function: Autoimmunity, aging and cancer. J Nutr 132, 2401S–2405S.

    PubMed  CAS  Google Scholar 

  96. K. Gronbaek, M. Treppendahl, F. Asmar, and P. Guldberg (2008) Epigenetic changes in cancer as potential targets for prophylaxis and maintenance therapy. Basic Clin Pharmacol Toxicol 103, 389–396.

    Article  PubMed  CAS  Google Scholar 

  97. D. C. Dolinoy, D. Huang, and R. L. Jirtle (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104, 13056–13061.

    Article  PubMed  CAS  Google Scholar 

  98. J. A. Yoder, C. P. Walsh, and T. H. Bestor (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13, 335–340.

    Article  PubMed  CAS  Google Scholar 

  99. S. P. Barros and S. Offenbacher (2009) Epigenetics: Connecting environment and genotype to phenotype and disease. J Dent Res 88, 400–408.

    Article  PubMed  CAS  Google Scholar 

  100. E. A. Miska (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15, 563–568.

    Article  PubMed  CAS  Google Scholar 

  101. P. D. Zamore and B. Haley (2005) Ribo-gnome: The big world of small RNAs, Science 309, 1519–1524.

    Article  PubMed  CAS  Google Scholar 

  102. K. T. Yeh, J. G. Chang, T. H. Lin, Y. F. Wang, J. Y. Chang, M. C. Shih, and C. C. Lin (2003) Correlation between protein expression and epigenetic and mutation changes of wnt pathway-related genes in oral cancer. Int J Oncol 23, 1001–1007.

    PubMed  CAS  Google Scholar 

  103. W. S. Post, P. J. Goldschmidt-Clermont, C. C. Wilhide, A. W. Heldman, M. S. Sussman, P. Ouyang, E. E. Milliken, and J. P. Issa (1999) Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res 43, 985–991.

    Article  PubMed  CAS  Google Scholar 

  104. D. J. Barker, J. G. Eriksson, T. Forsen, and C. Osmond (2002) Fetal origins of adult disease: Strength of effects and biological basis. Int J Epidemiol 31, 1235–1239.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Pérez-Sayáns García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

García, M.PS., García-García, A. (2012). Epigenome and DNA Methylation in Oral Squamous Cell Carcinoma. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 863. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-612-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-612-8_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-611-1

  • Online ISBN: 978-1-61779-612-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics