Skip to main content

Plant Phospholipases: An Overview

  • Protocol
  • First Online:
Lipases and Phospholipases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 861))

Abstract

Plant phospholipases can be grouped into four major types, phospholipase D, phospholipase C, phospholipase A1 (PLA1), and phospholipase A2 (PLA2), that hydrolyze glycerophospholipids at different ester bonds. Within each type, there are different families or subfamilies of enzymes that can differ in substrate specificity, cofactor requirement, and/or reaction conditions. These differences provide insights into determining the cellular function of specific phospholipases in plants, and they can be explored for different industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–336

    PubMed  CAS  Google Scholar 

  2. Qin C, Wang X (2002) The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLD zeta 1 with distinct regulatory domains. Plant physiol 128:1057–1068

    PubMed  CAS  Google Scholar 

  3. Liu Q, Zhang C, Yang Y et al (2010) Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape. BMC Plant Biol. 10:117/1471

  4. Li G, Lin F, Xue HW (2007) Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLD beta 1 in seed germination. Cell Res 17:881–894

    PubMed  CAS  Google Scholar 

  5. Oblozinsky M, Bezakova L, Mansfeld J et al (2011) The transphosphatidylation potential of a membrane-bound phospholipase D from poppy seedlings. Phytochemistry 72:160–165

    PubMed  CAS  Google Scholar 

  6. Wang X, Devaiah SP, Zhang W et al (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    PubMed  CAS  Google Scholar 

  7. Pappan K, Wang X (1999) Plant phospholipase Dalpha is an acidic phospholipase active at near-physiological Ca(2+) concentrations. Arch Biochem Biophys 368:347–353

    PubMed  CAS  Google Scholar 

  8. Pappan K, Zheng S, Wang X (1997) Identification and characterization of a novel plant phospholipase D that requires polyphosphoinositides and submicromolar calcium for activity in Arabidopsis. J Biol Chem 272:7048–7054

    PubMed  CAS  Google Scholar 

  9. Pappan K, Qin W, Dyer JH et al (1997) Molecular cloning and functional analysis of polyphosphoinositide-dependent phospholipase D, PLDbeta, from Arabidopsis. J Biol Chem 272:7055–7061

    PubMed  CAS  Google Scholar 

  10. Qin W, Pappan K, Wang X (1997) Molecular heterogeneity of phospholipase D (PLD). Cloning of PLDgamma and regulation of plant PLDgamma, -beta, and -alpha by polyphosphoinositides and calcium. J Biol Chem 272:28267–28273

    PubMed  CAS  Google Scholar 

  11. Pappan K, Austin-Brown S, Chapman KD et al (1998) Substrate selectivities and lipid modulation of plant phospholipase D alpha, -beta, and -gamma. Arch Biochem Biophys 353:131–140

    PubMed  CAS  Google Scholar 

  12. Austin-Brown SL, Chapman KD (2002) Inhibition of phospholipase D alpha by N-acylethanolamines. Plant Physiol 129:1892–1898

    PubMed  CAS  Google Scholar 

  13. Wang C, Wang X (2001) A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol 127:1102–1112

    PubMed  CAS  Google Scholar 

  14. Qin C, Wang C, Wang X (2002) Kinetic analysis of Arabidopsis phospholipase D-delta. Sub-strate preference and mechanism of activation by Ca2+ and phosphatidylinositol 4,5-biphosphate. J Biol Chem 277:49685–49690

    PubMed  CAS  Google Scholar 

  15. Hong Y, Devaiah SP, Bahn SC et al (2009) Phospholipase D epsilon and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J 58:376–387

    PubMed  CAS  Google Scholar 

  16. Sang Y, Zheng S, Li W et al (2001) Regulation of plant water loss by manipulating the expression of phospholipase Dalpha. Plant J 28:135–144

    PubMed  CAS  Google Scholar 

  17. Hong Y, Pan X, Welti R et al (2008) The effect of phospholipase D-alpha3 on Arabidopsis response to hyperosmotic stress and glucose. Plant Signal Behav 3:1099–1100

    PubMed  Google Scholar 

  18. Li W, Wang R, Li M et al (2008) Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana. J Biol Chem 283:461–468

    PubMed  CAS  Google Scholar 

  19. Laxalt AM, ter Riet B, Verdonk JC et al (2001) Characterization of five tomato phospholipase D cDNAs: rapid and specific expression of LePLDbeta1 on elicitation with xylanase. Plant J 26:237–247

    PubMed  CAS  Google Scholar 

  20. de Torres ZM, Fernandez-Delmond I, Niittyla T et al (2002) Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Mol Plant Microbe Interact 15:808–816

    Google Scholar 

  21. Li W, Li M, Zhang W et al (2004) The plasma membrane-bound phospholipase D-delta enhances freezing tolerance in Arabidopsis thaliana. Nature Biotechnol 22:427–433

    Google Scholar 

  22. Chen QF, Xiao S, Chye ML (2008) Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiol 148:304–315

    PubMed  CAS  Google Scholar 

  23. Gardiner JC, Harper JD, Weerakoon ND et al (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13:2143–2158

    PubMed  CAS  Google Scholar 

  24. Katagiri T, Takahashi S, Shinozaki K (2001) Involvement of a novel Arabidopsis phospholipase D, AtPLDdelta, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J 26:595–605

    PubMed  CAS  Google Scholar 

  25. Zhang W, Wang C, Qin C et al (2003) The oleate-stimulated phospholipase D, PLDdelta, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295

    PubMed  CAS  Google Scholar 

  26. Li M, Welti R, Wang X (2006) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases D zeta1 and D zeta2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761

    PubMed  CAS  Google Scholar 

  27. Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F et al (2006) Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Nat Acad Sci USA 103:6765–6770

    PubMed  CAS  Google Scholar 

  28. Li G, Xue HW (2007) Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295

    PubMed  CAS  Google Scholar 

  29. Nakamura Y, Awai K, Masuda T et al (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280:7469–7476

    PubMed  CAS  Google Scholar 

  30. Peters C, Li M, Narasimhan R et al (2010) Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22:2642–2659

    PubMed  CAS  Google Scholar 

  31. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physio Rev 80:1291–1335

    CAS  Google Scholar 

  32. Suh PG, Park JI, Manzoli L et al (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41:415–434

    PubMed  CAS  Google Scholar 

  33. Tasma IM, Brendel V, Whitham SA et al (2008) Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol Biochem 46:627–637

    PubMed  CAS  Google Scholar 

  34. Mueller-Roeber B, Pical C (2002) Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol 130:22–46

    PubMed  CAS  Google Scholar 

  35. Wang X (2001) Plant Phospholipases. Annu Rev Plant Physiol Plant Mol Biol 52:211–231

    PubMed  CAS  Google Scholar 

  36. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    PubMed  CAS  Google Scholar 

  37. Titball RW (1993) Bacterial phospholipases C. Microbiol Rev 57:347–366

    PubMed  CAS  Google Scholar 

  38. Saint-Joanis B, Garnier T, Cole ST (1989) Gene cloning shows the alpha-toxin of Clostridium perfringens to contain both sphingomyelinase and lecithinase activities. Mol Gen Genet 219:453–460

    PubMed  CAS  Google Scholar 

  39. Sugahara T, Takahashi T, Yamaya S et al (1977) Vascular permeability increase by alpha-toxin (phospholipase C) of Clostridium perfringens. Toxicon 15:81–87

    PubMed  CAS  Google Scholar 

  40. Sugahara T, Takahashi T, Yamaya S et al (1976) In vitro aggregation of platelets induced by alpha-toxin (phospholipase C) of Clostridium perfringens. Jpn J Med Sci Biol 29:255–263

    PubMed  CAS  Google Scholar 

  41. Titball RW, Leslie DL, Harvey S et al (1991) Hemolytic and sphingomyelinase activities of Clostridium perfringens alpha-toxin are dependent on a domain homologous to that of an enzyme from the human arachidonic acid pathway. Infect Immun 59:1872–1874

    PubMed  CAS  Google Scholar 

  42. Hirayama T, Ohto C, Mizoguchi T et al (1995) A gene encoding a phosphatidylinositol-­specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 92:3903–3907

    PubMed  CAS  Google Scholar 

  43. Shi J, Gonzales RA, Bhattacharyya MK (1995) Characterization of a plasma membrane-associated phosphoinositide-specific phospholipase C from soybean. Plant J 8:381–390

    PubMed  CAS  Google Scholar 

  44. Yamamoto YT, Conkling MA, Sussex IM et al (1995) An Arabidopsis cDNA related to animal phosphoinositide-specific phospholipase C genes. Plant Physiol 107:1029–1030

    PubMed  CAS  Google Scholar 

  45. Hirayama T, Mitsukawa N, Shibata D et al (1997) AtPLC2, a gene encoding phosphoinositide-specific phospholipase C, is constitutively expressed in vegetative and floral tissues in Arabidopsis thaliana. Plant Mol Biol 34:175–180

    PubMed  CAS  Google Scholar 

  46. Kopka J, Pical C, Gray JE et al (1998) Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiol 116:239–250

    PubMed  CAS  Google Scholar 

  47. Dowd PE, Coursol S, Skirpan AL et al (2006) Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell 18:1438–1453

    PubMed  CAS  Google Scholar 

  48. Helling D, Possart A, Cottier S et al (2006) Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18:3519–3534

    PubMed  CAS  Google Scholar 

  49. Thole JM, Vermeer JE, Zhang Y et al (2008) Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabi-dopsis thaliana. Plant Cell 20:381–395

    PubMed  CAS  Google Scholar 

  50. Parre E, Ghars MA, Leprince AS et al (2007) Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol 144:503–512

    PubMed  CAS  Google Scholar 

  51. Xu X, Cao Z, Liu G et al (2004) Cloning and expression of AtPLC6, a gene encoding a phosphatidylinositol-specific phospholipase C in Arabidopsis thaliana. Chin Sci Bull 49:567–573

    CAS  Google Scholar 

  52. Hunt L, Mills LN, Pical C et al (2003) Phospholipase C is required for the control of stomatal aperture by ABA. Plant J 34:47–55

    PubMed  CAS  Google Scholar 

  53. Perera IY, Heilmann I, Boss WF (1999) Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci USA 96:5838–5843

    PubMed  CAS  Google Scholar 

  54. Shigaki T, Bhattacharyya MK (2002) Nutrients induce an increase in inositol 1,4,5-trisphosphate in soybean cells: implication for the involvement of phosphoinositide-specific phospholipase C in DNA synthesis. Plant Biol 4:53–61

    CAS  Google Scholar 

  55. DeWald DB, Torabinejad J, Jones CA et al (2001) Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed arabidopsis. Plant Physiol 126:759–769

    PubMed  CAS  Google Scholar 

  56. Harada A, Sakai T, Okada K (2003) Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci USA 100:8583–8588

    PubMed  CAS  Google Scholar 

  57. Apone F, Alyeshmerni N, Wiens K et al (2003) The G-protein-coupled receptor GCR1 regulates DNA synthesis through activation of phosphatidylinositol-specific phospholipase C. Plant Physiol 133:571–579

    PubMed  CAS  Google Scholar 

  58. Gaude N, Nakamura Y, Scheible WR et al (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56:28–39

    PubMed  CAS  Google Scholar 

  59. Ryu SB (2004) Phospholipid-derived signaling mediated by phospholipase A in plants. Trends Plant Sci 9:229–235

    PubMed  CAS  Google Scholar 

  60. Ishiguro S, Kawai-Oda A, Ueda J et al (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    PubMed  CAS  Google Scholar 

  61. Hyun Y, Choi S, Hwang HJ et al (2008) Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell 14:183–192

    PubMed  CAS  Google Scholar 

  62. Seo YS, Kim EY, Kim JH et al (2009) Enzymatic characterization of class I DAD1-like acylhydrolase members targeted to chloroplast in Arabidopsis. FEBS Lett 583:2301–2307

    PubMed  CAS  Google Scholar 

  63. Higgs HN, Han MH, Johnson GE et al (1998) Cloning of a phosphatidic acid-preferring phospholipase A1 from bovine testis. J Biol Chem 273:5468–5477

    PubMed  CAS  Google Scholar 

  64. Kato T, Morita MT, Fukaki H et al (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46

    PubMed  CAS  Google Scholar 

  65. Bahn SC, Lee HY, Kim HJ et al (2003) Characterization of Arabidopsis secretory phospholipase A2-gamma cDNA and its enzymatic properties. FEBS Lett 553:113–118

    PubMed  CAS  Google Scholar 

  66. Lee HY, Bahn SC, Kang YM et al (2003) Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in Arabidopsis. Plant Cell 15:1990–2002

    PubMed  CAS  Google Scholar 

  67. Kim JY, Chung YS, Ok SH et al (1999) Characterization of the full-length sequences of phospholipase A2 induced during flower development. Biochim Biophys Acta 1489:389–392

    PubMed  CAS  Google Scholar 

  68. Stahl U, Lee M, Sjodahl S et al (1999) Plant low-molecular-weight phospholipase A2S (PLA2s) are structurally related to the animal secretory PLA2s and are present as a family of isoforms in rice (Oryza sativa). Plant Mol Biol 41:481–490

    PubMed  CAS  Google Scholar 

  69. Kim DK, Lee HJ, Lee Y (1994) Detection of two phospholipase A2 (PLA2) activities in leaves of higher plant Vicia faba and comparison with mammalian PLA2’s. FEBS Lett 343:213–218

    PubMed  CAS  Google Scholar 

  70. Stahl U, Ek B, Stymne S (1998) Purification and characterization of a low-molecular-weight phospholipase A2 from developing seeds of elm. Plant Physiol 117:197–205

    PubMed  CAS  Google Scholar 

  71. Mansfeld J, Ulbrich-Hofmann R (2007) Secretory phospholipase A2-alpha from Arabidopsis thaliana: functional parameters and substrate preference. Chem Phys Lipids 150:156–166

    PubMed  CAS  Google Scholar 

  72. Lee HY, Bahn SC, Shin JS et al (2005) Multiple forms of secretory phospholipase A2 in plants. Prog Lipid Res 44:52–67

    PubMed  CAS  Google Scholar 

  73. Holk A, Rietz S, Zahn M et al (2002) Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction. Plant Physiol 130:90–101

    PubMed  CAS  Google Scholar 

  74. Scherer GF, Ryu SB, Wang X et al (2010) Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. Trends Plant Sci 15:693–700

    PubMed  CAS  Google Scholar 

  75. Matos AR, Pham-Thi AT (2009) Lipid deacylating enzymes in plants: old activities, new genes. Plant Physiol Biochem 47:491–503

    PubMed  CAS  Google Scholar 

  76. La Camera S, Geoffroy P, Samaha H et al (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J 44:810–825

    PubMed  Google Scholar 

  77. Matos AR, Gigon A, Laffray D et al (2008) Effects of progressive drought stress on the expression of patatin-like lipid acyl hydrolase genes in Arabidopsis leaves. Physiol Plant 134:110–120

    PubMed  CAS  Google Scholar 

  78. Yang W, Devaiah SP, Pan X et al (2007) AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. J Biol Chem 282:18116–18128

    PubMed  CAS  Google Scholar 

  79. Dhondt S, Gouzerh G, Muller A et al (2002) Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acid. Plant J 32:749–762

    PubMed  CAS  Google Scholar 

  80. Sahsah Y, Campos P, Gareil M et al (1998) Enzymatic degradation of polar lipids in Vigna unguiculata leaves and influence of drought stress. Physiol Plant 104:577–586

    CAS  Google Scholar 

  81. Galliard T (1971) The enzymic deacylation of phospholipids and galactolipids in plants. Purification and properties of a lipolytic acyl-hydrolase from potato tubers. Biochem J 121:379–390

    PubMed  CAS  Google Scholar 

  82. Matos AR, d’Arcy-Lameta A, Franca M et al (2001) A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Lett 491:188–192

    PubMed  CAS  Google Scholar 

  83. Reina-Pinto JJ, Voisin D, Kurdyukov S et al (2009) Misexpression of FATTY ACID ELONGATION1 in the Arabidopsis epidermis induces cell death and suggests a critical role for phospholipase A2 in this process. Plant Cell 21:1252–1272

    PubMed  CAS  Google Scholar 

  84. Rietz S, Dermendjiev G, Oppermann E et al (2010) Roles of Arabidopsis patatin-related phospholipases a in root development are related to auxin responses and phosphate deficiency. Mol Plant 3:524–538

    PubMed  CAS  Google Scholar 

  85. Li M, Bahn SC, Guo L et al (2011) Patatin-related phospholipase pPLAIIIβ-induced changes in lipid metabolism alter cellulose content and cell elongation in Arabidopsis. Plant Cell 23:1107–1123

    Google Scholar 

  86. Ellinger D, Stingl N, Kubigsteltig II et al (2010) DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation. Plant Physiol 153:114–127

    PubMed  CAS  Google Scholar 

  87. Hong Y, Wang TW, Hudak KA et al (2000) An ethylene-induced cDNA encoding a lipase expressed at the onset of senescence. Proc Natl Acad Sci USA 97:8717–8722

    PubMed  CAS  Google Scholar 

  88. Thompson J, Taylor C, Wang TW (2000) Altered membrane lipase expression delays leaf senescence. Biochem Soc Trans 28:775–777

    PubMed  CAS  Google Scholar 

  89. Morita MT, Kato T, Nagafusa K et al (2002) Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis. Plant Cell 14:47–56

    PubMed  CAS  Google Scholar 

  90. O’Luanaigh N, Pardo R, Fensome A et al (2002) Continual production of phosphatidic acid by phospholipase D is essential for antigen-stimulated membrane ruffling in cultured mast cells. Mol Biol Cell 13:3730–3746

    PubMed  Google Scholar 

  91. Yan H, Lu D, Rivkees SA (2003) Lysophosphatidic acid regulates the proliferation and migration of olfactory ensheathing cells in vitro. Glia 44:26–36

    PubMed  Google Scholar 

  92. Froidure S, Canonne J, Daniel X et al (2010) AtsPLA2-alpha nuclear relocalization by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response. Proc Natl Acad Sci USA 107:15281–15286

    PubMed  CAS  Google Scholar 

  93. Lee OR, Kim SJ, Kim HJ et al (2010) Phospholipase A(2) is required for PIN-FORMED protein trafficking to the plasma membrane in the Arabidopsis root. Plant Cell 22:1812–1825

    PubMed  CAS  Google Scholar 

  94. Seo J, Lee HY, Choi H et al (2008) Phospholipase A2beta mediates light-induced stomatal opening in Arabidopsis. J Exp Bot 59:3587–3594

    PubMed  CAS  Google Scholar 

  95. Kim HJ, Ok SH, Bahn SC et al (2011) Endoplasmic reticulum- and Golgi-localized phospholipase A2 plays critical roles in Arabidopsis pollen development and germination. Plant Cell 23:94–110

    PubMed  CAS  Google Scholar 

  96. Liao HL, Burns JK (2010) Light controls phospholipase A2alpha and beta gene expression in Citrus sinensis. J Exp Bot 61:2469–2478

    PubMed  CAS  Google Scholar 

  97. Ackermann EJ, Kempner ES, Dennis EA (1994) Ca(2+)-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization. J Biol Chem 269:9227–9233

    PubMed  CAS  Google Scholar 

  98. La Camera S, Balague C, Gobel C et al (2009) The Arabidopsis patatin-like protein 2 (PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens. Mol Plant Microbe Interact 22:469–481

    PubMed  Google Scholar 

  99. Perez-Torres CA, Lopez-Bucio J, Cruz-Ramirez A et al (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    PubMed  CAS  Google Scholar 

  100. Huang S, Cerny RE, Bhat DS et al (2001) Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging. Plant Physiol 125:573–584

    PubMed  CAS  Google Scholar 

  101. Ramrakhiani L, Chand S (2011) Recent progress on phospholipases: different sources, assay methods. Industrial potential and pathogenicity. Appl Biochem Biotechnol 164:991–1022

    Google Scholar 

  102. Gunstone FD (1999) Enzymes as biocatalysts in the modification of natural lipids. J Sci Food Agric 79:1535–1549

    CAS  Google Scholar 

  103. Ulbrich-Hofmann R, Lerchner A, Oblozinsky M et al (2005) Phospholipase D and its application in biocatalysis. Biotechnol Lett 27:535–544

    PubMed  CAS  Google Scholar 

  104. Mansfeld J (2009) Plant phospholipases A2: perspectives on biotechnological applications. Biotechnol Lett 31:1373–1380

    PubMed  CAS  Google Scholar 

  105. Peng Y, Zhang J, Cao G et al (2010) Overexpression of a PLDalpha1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. Plant Cell Rep 29:793–802

    PubMed  CAS  Google Scholar 

  106. Vossen JH, Abd-El-Haliem A, Fradin EF et al (2010) Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62:224–239

    PubMed  CAS  Google Scholar 

  107. Yamaguchi T, Kuroda M, Yamakawa H et al (2009) Suppression of a phospholipase D gene, OsPLDbeta1, activates defense responses and increases disease resistance in rice. Plant Physiol 150:308–319

    PubMed  CAS  Google Scholar 

  108. Ryu SB, Lee HJ, Hwang IW et al (2009) Transgenic plants exhibiting increased resistance to biotic and abiotic stresses or accelerated flowering time by overexpression of a secretory phospholipase A2. US 12/527,323 United State Patent and Trademark Office

    Google Scholar 

  109. Devaiah SP, Pan X, Hong Y, Roth M et al (2007) Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant J 50:950–957

    PubMed  CAS  Google Scholar 

  110. Wang CR, Yang AF, Yue GD et al (2008) Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227:1127–1140

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in Xuemin Wang laboratory was supported by grants from the National Science Foundation (MCB-0922879; IOS-0818740), the US Department of Energy (DE-SC0001295), and the US Department of Agriculture (2007-35318-18393).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, G., Ryu, S., Wang, X. (2012). Plant Phospholipases: An Overview. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 861. Humana Press. https://doi.org/10.1007/978-1-61779-600-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-600-5_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-599-2

  • Online ISBN: 978-1-61779-600-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics