Skip to main content

Lipases and Esterases from Extremophiles: Overview and Case Example of the Production and Purification of an Esterase from Thermus thermophilus HB27

  • Protocol
  • First Online:
Lipases and Phospholipases

Abstract

Extremophiles are organisms that have evolved to exist in a variety of extreme environments. They fall into a number of different classes that include thermophiles, halophiles, acidophiles, alkalophiles, psychrophiles, and barophiles (piezophiles). Extremophiles have the potential to produce uniquely valuable biocatalysts that function under conditions in which usually the enzymes of their nonextremophilic counterparts could not. Among novel enzymes isolated from extremophilic microorganisms, hydrolases, and particularly lipases and esterases are experiencing a growing demand. Lipases (EC 3.1.1.3) and esterases (EC 3.1.1.1) catalyze the cleavage of ester bounds in aqueous media and the reverse reaction in organic solvents. Both lipolytic enzymes have relevant applications in food, dairy, detergent, biofuel, and pharmaceutical industries. Here, we summarize the properties of lipases and esterases from the main extremophile groups: thermophiles and hyperthermophiles, psychrophiles, halophiles, alkalophiles/acidophiles, and solvent-resistant microorganisms.

We report the biomass and lipolytic activity production by Thermus thermophilus HB27 in 5-L stirred-tank bioreactor at 70°C. Suitability of thermal spring water for culture media formulation is shown. In addition, a protocol to isolate and purify a cell-bound esterase from this microorganism is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demirjian D, Morís-Varas F, Cassidy C (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  PubMed  CAS  Google Scholar 

  2. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  3. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotech 13:390–397

    Article  PubMed  CAS  Google Scholar 

  4. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  PubMed  CAS  Google Scholar 

  5. Marangoni AG, Rousseau D (1995) Engineering triacylglycerols: the role of interesterification. Trends Food Sci Technol 6:329–335

    Article  CAS  Google Scholar 

  6. Lagarde D, Nguyen HK, Ravot G et al (2002) High-throughput screening of thermostable esterases for industrial bioconversions. Org Process Res Dev 6:441–445

    Article  CAS  Google Scholar 

  7. Antranikian G (2008) Thermophiles: biology and technology at high temperatures. In: Robb F, Antranikian G, Grogan D et al (eds) Industrial relevance of thermophiles and their enzymes. CRC Press, Boca Raton, Florida

    Google Scholar 

  8. Atomi H, Imanaka T (2004) Thermostable carboxylesterases from hyperthermophiles. Tetrahedron Asymmetry 15:2729–2735

    Article  CAS  Google Scholar 

  9. Bruins M, Janssen A, Boom R (2001) Thermozymes and their applications: a review of recent literature and patents. Appl Biochem Biotechnol 90:155–186

    Article  PubMed  CAS  Google Scholar 

  10. Egorova K, Antranikian G (2005) Industrial relevance of thermophilic archaea. Curr Opin Microbiol 8:649–655

    Article  PubMed  CAS  Google Scholar 

  11. Levisson M, van der Oost J, Kengen SW (2009) Carboxylic ester hydrolases from hyperthermophiles. Extremophiles 13:567–581

    Article  PubMed  CAS  Google Scholar 

  12. Salameh M, Wiegel J (2007) Lipases from extremophiles and potential for industrial applications. Adv Appl Microbiol 61:253–283

    Article  PubMed  CAS  Google Scholar 

  13. Fuciños P, Pastrana L, Sanromán A, Longo MA, Hermoso JA, Rúa ML (2011) An esterase from Thermus thermophilus HB27 with hyper-thermoalkalophilic properties: Purification, characterisation and structural modelling. J Mol Catal B Enzym 70:127–137

    Article  PubMed  Google Scholar 

  14. Gao R, Feng Y, Ishikawa K et al (2003) Cloning, purification and properties of a hyperthermophilic esterase from archaeon Aeropyrum pernix K1. J Mol Catal B Enzym 24–25:1–8

    Article  Google Scholar 

  15. Ikeda M, Clark DS (1998) Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. Biotechnol Bioeng 57:624–629

    Article  PubMed  CAS  Google Scholar 

  16. Bartlam M, Wang G, Yang H et al (2004) Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1. Structure 12:1481–1488

    Article  PubMed  CAS  Google Scholar 

  17. Byun J, Rhee J, Kim N et al (2007) Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties. BMC Struct Biol 7:47

    Google Scholar 

  18. De Simone G, Menchise V, Alterio V et al (2004) The crystal structure of an EST2 mutant unveils structural insights on the H group of the carboxylesterase/lipase family. J Mol Biol 343:137–146

    Article  PubMed  Google Scholar 

  19. De Simone G, Menchise V, Manco G et al (2001) The crystal structure of a hyper-thermophilic carboxylesterase from the Archaeon Archaeoglobus fulgidus. J Mol Biol 314:507–518

    Article  PubMed  Google Scholar 

  20. Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19:261–278

    Article  PubMed  CAS  Google Scholar 

  21. Khudary R, Venkatachalam R, Katzer M et al (2010) A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization. Extremophiles 14:273–285

    Article  PubMed  Google Scholar 

  22. Yu Y, Li H, Zeng Y et al (2009) Extracellular enzymes of cold-adapted bacteria from Arctic sea ice, Canada Basin. Polar Biol 32:1539–1547

    Article  Google Scholar 

  23. Luo Y, Zheng Y, Jiang Z et al (2006) A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl Microbiol Biot 73:349–355

    Article  CAS  Google Scholar 

  24. Nichols D, Bowman J, Sanderson K et al (1999) Developments with Antarctic micro­organisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246

    Article  PubMed  CAS  Google Scholar 

  25. Joseph B, Ramteke P, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  PubMed  CAS  Google Scholar 

  26. Yang X, Lin X, Fan T et al (2008) Cloning and expression of lipP, a gene encoding a cold-adapted lipase from Moritella sp. 2–5–10–1. Curr Microbiol 56:194–198

    Article  PubMed  CAS  Google Scholar 

  27. Kamekura M (1998) Diversity of extremely halophilic bacteria. Extremophiles 2:289–295

    Article  PubMed  CAS  Google Scholar 

  28. Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3:39–46

    Article  PubMed  CAS  Google Scholar 

  29. Kanlayakrit W, Boonpan A (2007) Screening of halophilic lipase-producing bacteria and characterization of enzyme for fish sauce quality improvement. Kasetsart J Nat Sci 41:576–585

    CAS  Google Scholar 

  30. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C et al (2002) An extreme halophilic enzyme active at low salt in reversed micelles. J Biotechnol 93:159–164

    Article  PubMed  CAS  Google Scholar 

  31. Van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  PubMed  Google Scholar 

  32. Kulkarni N, Gadre R (2002) Production and properties of an alkaline, thermophilic lipase from Pseudomonas fluorescens NS2W. J Ind Microbio Biotechnol 28:344–348

    Article  CAS  Google Scholar 

  33. Hari Krishna S, Karanth N (2002) Lipases and lipase-catalyzed esterification reactions in nonaqueous media. Catal Rev Sci Eng 44:499–591l

    Article  Google Scholar 

  34. Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282l

    Article  CAS  Google Scholar 

  35. Hudson EP, Eppler RK, Clark DS (2005) Biocatalysis in semi-aqueous and nearly anhydrous conditions. Curr Opin Biotechnol 16:637–643

    Article  PubMed  CAS  Google Scholar 

  36. Hotta Y, Ezaki S, Atomi H et al (2002) Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Appl Environ Microbiol 68:3925–3931

    Article  PubMed  CAS  Google Scholar 

  37. Hess M (2008) Thermoacidophilic proteins for biofuel production. Trends Microbiol 16:414–419

    Article  PubMed  CAS  Google Scholar 

  38. Sehgal AC, Kelly RM (2002) Enantiomeric resolution of 2-aryl propionic esters with hyperthermophilic and mesophilic esterases: contrasting thermodynamic mechanisms. J Am Chem Soc 124:8190–8191

    Article  PubMed  CAS  Google Scholar 

  39. Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19:102–108

    Article  PubMed  CAS  Google Scholar 

  40. Hezayen FF, Rehm BH, Eberhardt R et al (2000) Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol 54:319–325

    Article  PubMed  CAS  Google Scholar 

  41. Ikeda M, Clark DS (1998) Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. Biotechnol Bioeng 57:624–629

    Article  PubMed  CAS  Google Scholar 

  42. Manco G, Febbraio F, Rossi M (1998) Thermophilic esterases and the amino acid “traffic rule” in the hormone sensitive lipase subfamily. Prog Biotechnol 15:325–330

    Article  CAS  Google Scholar 

  43. Manco G, Giosuè E, D’Auria S et al (2000) Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus. Arch Biochem Biophys 373:182–192

    Article  PubMed  CAS  Google Scholar 

  44. Park Y, Choi SY, Lee H (2006) A carboxylesterase from the thermoacidophilic archaeon Sulfolobus solfataricus P1; purification, characterization, and expression. Biochim Biophys Acta 1760:820–828

    Article  PubMed  CAS  Google Scholar 

  45. Schmidt-Dannert C, Rúa M, Atomi H et al (1996) Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. Molecular cloning, nucleotide sequence, purification and some properties. Biochim Biophys Acta Lipid Metab 1301:105–114

    Article  Google Scholar 

  46. Angelov A, Mientus M, Liebl S et al (2009) A two-host fosmid system for functional screening of (meta)genomic libraries from extreme thermophiles. Syst Appl Microbiol 32:177–185

    Article  PubMed  CAS  Google Scholar 

  47. Otzen DE (2002) Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. Biophys J 83:2219–2230

    Article  PubMed  CAS  Google Scholar 

  48. Cava F, Hidalgo A, Berenguer J (2009) Thermus thermophilus as biological model. Extremophiles 13:213–231

    Article  PubMed  CAS  Google Scholar 

  49. Bell P, Sunna A, Gibbs M et al (2002) Prospecting for novel lipase genes using PCR. Microbiol 148:2283–2291

    CAS  Google Scholar 

  50. Rhee JK, Ahn DG, Kim YG et al (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71:817–825

    Article  PubMed  CAS  Google Scholar 

  51. Roh C, Villatte F (2008) Isolation of a low-temperature adapted lipolytic enzyme from uncultivated micro-organism. J Appl Microbiol 105:116–123

    Article  PubMed  CAS  Google Scholar 

  52. Tirawongsaroj P, Sriprang R, Harnpicharnchai P et al (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J Biotechnol 133:42–49

    Article  PubMed  CAS  Google Scholar 

  53. Fuciños P, Rúa M, Longo M et al (2008) Thermal spring water enhances lipolytic activity in Thermus thermophilus HB27. Process Biochem 43:1383–1390

    Article  Google Scholar 

  54. Fuciños P, Domínguez A, Sanromán M et al (2005) Production of thermostable lipolytic activity by Thermus species. Biotechnol Prog 21:1198–1205

    Article  PubMed  Google Scholar 

  55. Daniel RM, Danson MJ (2001) Assaying activity and assessing thermostability of hyperthermophilic enzymes. Methods Enzymol 334:283–29

    Article  PubMed  CAS  Google Scholar 

  56. Park Y, Choi SY, Lee H (2006) A carboxylesterase from the thermoacidophilic archaeon Sulfolobus solfataricus P1; purification, characterization, and expression. Biochim Biophys Acta 1760:820–828

    Article  PubMed  CAS  Google Scholar 

  57. Sehgal AC, Tompson R, Cavanagh J et al (2002) Structural and catalytic response to temperature and cosolvents of carboxylesterase EST1 from the extremely thermoacidophilic archaeon Sulfolobus solfataricus P1. Biotechnol Bioeng 80:784–793

    Article  PubMed  CAS  Google Scholar 

  58. Levisson M, Sun L, Hendriks S et al (2009) Crystal structure and biochemical properties of a novel thermostable esterase containing an immunoglobulin-like domain. J Mol Biol 385:949–962

    Article  PubMed  CAS  Google Scholar 

  59. Salameh M, Wiegel J (2007) Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl Environ Microbiol 73:7725–7731

    Article  PubMed  CAS  Google Scholar 

  60. Shang Y, Zhang X, Wang X et al (2010) Biochemical characterization and mutational improvement of a thermophilic esterase from Sulfolobus solfataricus P2. Biotechnol Lett 32:1151–1157

    Article  PubMed  CAS  Google Scholar 

  61. Kulakova L, Galkin A, Nakayama T et al (2004) Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly→Pro substitution near the active site on its catalytic activity and stability. Biochim Biophys Acta Protein Proteomics 1696:59–65

    Article  CAS  Google Scholar 

  62. Zimmer C, Platz T, Cadez N et al (2006) A cold active (2R,3R)-(-)-di-O-benzoyl-tartrate hydrolyzing esterase from Rhodotorula mucilaginosa. Appl Microbiol Biotechnol 73:132–140

    Article  PubMed  CAS  Google Scholar 

  63. Aurilia V, Parracino A, Saviano M et al (2007) The psychrophilic bacterium Pseudoaltero­monas halosplanktis TAC125 possesses a gene coding for a cold-adapted feruloyl esterase activity that shares homology with esterase enzymes from γ-proteobacteria and yeast. Gene 397:51–57

    Article  PubMed  CAS  Google Scholar 

  64. Arpigny J, Lamotte J, Gerday C (1997) Molecular adaptation to cold of an antarctic bacterial lipase. J Mol Catal B Enzym 3:29–35

    Article  CAS  Google Scholar 

  65. Joshi GK, Kumar S, Tripathi BN et al (2006) Production of alkaline lipase by Corynebacterium paurometabolum, MTCC 6841 isolated from Lake Naukuchiatal, Uttaranchal State, India. Curr Microbiol 52:354–358

    Article  PubMed  CAS  Google Scholar 

  66. Kiran G, Shanmughapriya S, Jayalakshmi J et al (2008) Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioprocess Biosyst Eng 31:483–492

    Article  PubMed  CAS  Google Scholar 

  67. De Pascale D, Cusano A, Autore F et al (2008) The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12:311–323

    Article  PubMed  CAS  Google Scholar 

  68. Chen R, Guo L, Dang H (2010) Gene cloning, expression and characterization of a cold-adapted lipase from a psychrophilic deep-sea bacterium Psychrobacter sp. C18. World J Microbiol Biotechnol 27:431–441

    Google Scholar 

  69. De Santi C, Tutino M, Mandrich L et al (2010) The hormone-sensitive lipase from Psychrobacter sp. TA144: new insight in the structural/functional characterization. Biochimie 92:949–957

    Article  PubMed  Google Scholar 

  70. Camacho R, Mateos J, González-Reynoso O et al (2009) Production and characterization of esterase and lipase from Haloarcula marismortui. J Ind Microbiol Biotechnol 36:901–909

    Article  PubMed  CAS  Google Scholar 

  71. Müller-Santos M, de Souza E, Pedrosa F et al (2009) First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochim Biophys Acta Mol Cell Biol Lipids 1791:719–729

    Google Scholar 

  72. Rao L, Zhao X, Pan F et al (2009) Solution behavior and activity of a halophilic esterase under high salt concentration. PLoS ONE 4:e6980

    Google Scholar 

  73. Amoozegar M, Salehghamari E, Khajeh K et al (2008) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Basic Microbiol 48:160–167

    Article  PubMed  CAS  Google Scholar 

  74. Lv X, Guo L, Song L et al (2010) Purification and characterization of a novel extracellular carboxylesterase from the moderately halophilic bacterium Thalassobacillus sp. strain DF-E4. Ann Microbiol 61:281–290

    Google Scholar 

  75. Ghanem EH, Al-Sayed HA, Saleh KM (2000) An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World J Microb Biotechnol 16:459–464

    Article  CAS  Google Scholar 

  76. Bhushan B, Hoondal G (1994) Characterization of lipase from an alkalophilic Yeast sp. Biotechnol Lett 16:837–840

    Article  CAS  Google Scholar 

  77. Lin S, Chiou C, Yeh C et al (1996) Purification and partial characterization of an alkaline lipase from Pseudomonas pseudoalcaligenes F-111. Appl Environ Microbiol 62:1093–1095

    PubMed  CAS  Google Scholar 

  78. Savitha J, Ratledge C (1992) An inducible, intracellular, alkalophilic lipase in Aspergillus flavipes grown on triacylglycerols. World J Microb Biotechnol 8:129–131

    Article  CAS  Google Scholar 

  79. Savitha J, Srividya S, Jagat R et al (2007) Identification of potential fungal strain(s) for the production of inducible, extracellular and alkalophilic lipase. Afr J Biotechnol 6:564–568

    CAS  Google Scholar 

  80. Wang Y, Srivastava K, Shen G et al (1995) Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). J Ferment Bioeng 79:433–438

    Article  CAS  Google Scholar 

  81. Wang Y, Saha BC (1993) Purification and characterization of thermophilic and alkalophilic tributyrin esterase from Bacillus strain A30-1 (ATCC 53841). J Am Oil Soc 70:1135–1138

    Article  CAS  Google Scholar 

  82. Kakugawa K, Shobayashi M, Suzuki O et al (2002) Purification and characterization of a lipase from the glycolipid-producing yeast Kurtzmanomyces sp. I–11. Biosci Biotechnol Biochem 66:978–985

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Vigo and Deputación Provincial de Ourense (Project INOU10-08). We thank Dr. Berenguer for providing the Thermus strain. Pablo Fuciños is an Ánxeles-Alvariño Research Fellow (Xunta de Galicia, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa Rúa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fuciños, P. et al. (2012). Lipases and Esterases from Extremophiles: Overview and Case Example of the Production and Purification of an Esterase from Thermus thermophilus HB27. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 861. Humana Press. https://doi.org/10.1007/978-1-61779-600-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-600-5_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-599-2

  • Online ISBN: 978-1-61779-600-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics