Skip to main content

Tissue Preparation Using Arabidopsis

  • Protocol
  • First Online:
Plant Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 860))

Abstract

The ability to track changes in the levels of many metabolites in plants has great utility in a number of biological contexts. A metabolomics experiment usually requires the comparison of different varieties in either a functional genomics context or in response to perturbation by an external treatment. Such treatments can result in subtle changes in the final chemical signature of the plant tissue, and therefore, any unwanted variance produced in the generation of that tissue must be minimised. Procedures for plant growth, harvesting, preparation of extracts, and the subsequent collection of data have been optimised to minimise experimental variation within the dataset. This chapter describes in detail how to generate reproducible Arabidopsis tissue suitable for a typical plant metabolomics experiment. Issues concerned with tissue sampling, harvesting, and storage are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sumner, L.W., Mendes, P. and Dixon, R.A. (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817–836.

    CAS  Google Scholar 

  2. Ward, J.L., Harris, C., Lewis, J. and Beale. M. H. (2003) Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62, 949–957.

    Google Scholar 

  3. Schauer, N. and Fernie, A.R. (2006) Plant metabolomics: Towards biological function and mechanism. Trends Plant Sci. 11, 508–516.

    CAS  Google Scholar 

  4. Cuny, M., Vigneau, E., Le Gall, G., Colquhoun, I. J., Lees, M. and Rutledge, D. N. (2008) Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometrics tools. Anal Bioanal Chem 390 419–427.

    Article  PubMed  CAS  Google Scholar 

  5. Fu, J., Keurentjes, J.J.B., Bouwmeester, H., America, T., Verstappen, F.W.A., Ward, J.L., Beale, M.H., de Vos, R.C.H., Dijkstra, M., Scheltema, R.A., Johannes, F., Koornneef, M., Vreugdenhil, D., Breitling, R. and Jansen, R.C. (2009) System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nature Genetics 41 166–7.

    CAS  Google Scholar 

  6. Shulaev, V., Cortes, D., Miller, G. and Mittler, R. (2008) Metabolomics for plant stress response. Physiol. Plant. 132, 199–208.

    Article  CAS  Google Scholar 

  7. Bezemer, T.M. and van Dam, N.M. (2005) Linking aboveground and belowground interactions via induced plant defences. Trends Ecol Evol 20, 617–624.

    Google Scholar 

  8. Mounet, F., Lemaire-Chamley, M., Maucourt, M., Cabasson, C., Giraudel, J.L., Deborde, C., Lessire, R., Gallusci, P., Bertrand, A., Gaudillere, M., Rothan, C., Rolin, D., Moing, A. (2007) Quantitative metabolic profiles of tomato flesh and seeds during fruit development: Complementary analysis with ANN and PCA. Metabolomics 3, 273–288.

    CAS  Google Scholar 

  9. Bläsing, O.E., Gibon, Y., Günther, M., Höhne, M., Morcuende, R., Osuna, D., Thimm, O., Usadel, B., Scheible, W-R. and Stitt, M. (2005) Sugars and Circadian Regulation Make Major Contributions to the Global Regulation of Diurnal Gene Expression in Arabidopsis. Plant Cell. 17, 3257–3281.

    Google Scholar 

  10. Ward, J.L., Baker, J.M. and Beale, M.H. (2007) Recent applications of NMR spectroscopy in plant metabolomics. FEBS Journal 274, 1126–1131.

    CAS  Google Scholar 

  11. De Vos, R.C.H., Moco, S., Lommen, A., Keurentjes, J.B., Bino, R.B. and Hall, R.D. (2007) Untargeted large-scale plant meta-bolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols 2, 778–791.

    Google Scholar 

  12. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L. and Fernie, A.R. (2006) Gas chromatography mass spectrometry–based metabolite profiling in plants. Nature Protocols 1, 387–396.

    Article  PubMed  CAS  Google Scholar 

  13. Sogat, T., Igarashi, K., Ito, C., Mizobuchi, K., Zimmermann, H.P. and Tomita, M. (2009) Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal. Chem. 81, 6165–6174.

    Google Scholar 

  14. Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke, N., Sung, D.Y. and Guy, C.L. (2004) Exploring the Temperature-Stress Metabolome of Arabidopsis. Plant Physiol. 136 4159–4168.

    CAS  Google Scholar 

  15. Lugan, R., Niogret, M.F., Kervazo, L., Larher, F.R., Kopka, J. and Bouchereau, A. (2008) Metabolome and water status phenotyping of Arabidopsis under abiotic stress cues reveals new insight into ESK1 function. Plant Cell Environ 32, 95–108.

    Article  PubMed  Google Scholar 

  16. Gibon, Y., Usadel, B., Blaesing, O.E., Kamlage, B., Hoehne, M., Trethewey, R. and Stitt, M. (2006) Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes. Genome Biol 7, R76.

    Google Scholar 

  17. Tarpley, L., Duran, A.L., Kebrom, T.H. and Sumner, L.W. (2005) Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol 5, 8 (31May2005).

    Google Scholar 

  18. Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E. Davis, K.E. and Görlach, J. (2001) Growth Stage–Based Phenotypic Analysis of Arabidopsis. A Model for High Throughput Functional Genomics in Plants. Plant Cell 13, 1499–1510.

    CAS  Google Scholar 

  19. Norén, H., Svensson, P. and Andersson, B. (2004) A convenient and versatile hydroponic cultivation system for Arabidopsis thaliana. Physiol Plant 121, 343–348.

    Google Scholar 

  20. Robinson, M.M., Smid, M.P.L and Wolyn, D.J. (2006) High-quality and homogeneous Arabidopsis thaliana plants from a simple and inexpensive method of hydroponic cultivation. Can J. Bot 84, 1009–1012.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the EU Framework VI programme META-PHOR (FOOD-CT-2006-036220) and the UK Biotechnology and Biological Sciences Research Council (BBSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane L. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Llewellyn, A.M., Lewis, J., Miller, S.J., Corol, DI., Beale, M.H., Ward, J.L. (2011). Tissue Preparation Using Arabidopsis. In: Hardy, N., Hall, R. (eds) Plant Metabolomics. Methods in Molecular Biology, vol 860. Humana Press. https://doi.org/10.1007/978-1-61779-594-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-594-7_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-593-0

  • Online ISBN: 978-1-61779-594-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics