Skip to main content

Synthesis and Validation of Cyanine-Based Dyes for DIGE

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 854))

Abstract

The application of difference gel electrophoresis (DIGE), in particular its most common “minimal labeling” variety, utilizes N-hydroxysuccinimide esters of Cy2, Cy3, and Cy5 dyes, which are commercially available. We describe methods for the efficient synthesis of all three dyes from relatively inexpensive and commercially available precursors in only a few steps and with relatively high yields. In model DIGE experiments, the newly synthesized dyes proved to be indistinguishable from commercially available ones and have been shown to be stable for years while stored under argon as dry solids or after being dissolved in N,N-dimethylformamide.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. O’Farrel PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 250: 4007–4021.

    Google Scholar 

  2. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis 18: 2071–2077.

    Article  PubMed  CAS  Google Scholar 

  3. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3: 36–44.

    Article  PubMed  CAS  Google Scholar 

  4. Lilley KS, Friedman DB (2004) All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics 1: 401–409.

    Article  PubMed  CAS  Google Scholar 

  5. Karp NA, Lilley KS (2005) Maximising sensitivity for detecting changes in protein expression: experimental design using minimal CyDyes. Proteomics 5: 3105–3115.

    Article  PubMed  CAS  Google Scholar 

  6. Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1: 377–39.

    Article  PubMed  CAS  Google Scholar 

  7. Jung ME, Kim W-J (2006) Practical syntheses of dyes for difference gel electrophoresis. Bioorg Med Chem 14: 92–97.

    Article  PubMed  CAS  Google Scholar 

  8. Jedrzejewska B, Kabatc J, Pietrzak M, Paczkowski J (2003) Hemicyanine dyes: synthesis, structure and photophysical properties. Dyes Pigments 58: 47–58.

    Article  CAS  Google Scholar 

  9. Hamilton AL, Birch MN, Hatcher MJ, Bosworth N, Scott B (1999) Energy transfer assay method and reagent. PCT Int Appl WO/1999/064519.

    Google Scholar 

  10. Schouten JA, Ladame S, Mason SJ, Cooper MA, Balasubramanian SG (2003) Quadruplex-specific peptide−hemicyanine ligands by partial combinatorial selection. J Am Chem Soc 125: 5594–5595.

    Article  PubMed  CAS  Google Scholar 

  11. Gorb LT, Romanov NN, Fedotov KV, Tolmachev AI (1981) Meso-ionic compounds with a nitrogen bridging atom. Polymethine dyes of the thiazolo[3,2-a]quinolinium 1-oxide series. Khim Geterotsikl Soedin, 481–484.

    Google Scholar 

  12. Abramenko PI, Zhiryakov VG (1975) Polymethine dyes, derivatives of 6-furo[2,3-b]pyridine. Khim Geterotsikl Soedin, 475–479.

    Google Scholar 

  13. Bailey J, Elvidge JA (1973) Synthesis and properties of dyes containing the pyrano[2,3-d]pyrimidine nucleus. J Chem Soc, Perkin Trans, 1: 823–828.

    Article  Google Scholar 

  14. Cummins WJ, West RM, Smith JA (1999) Cyanine dyes. PCT Int Appl WO/1999/005221.

    Google Scholar 

  15. Jackson P, Cummins WJ, West R, Smith JA, Briggs MSJ (1998) Analysis of carbohydrates. PCT Int Appl WO/1998/015829.

    Google Scholar 

  16. Wurthner F (1999) DMF in acetic anhydride: A useful reagent for multiple-component syntheses of merocyanine dyes. Synthesis, 2103–2113.

    Google Scholar 

  17. Durr H, Ma Y, Cortellaro G (1995) Preparation of photochromic molecules with polymerizable organic functionalities. Synthesis: 294–298.

    Google Scholar 

  18. Lee LG, Woo SL, Head DF, Dubrow RS, Baer TM (1995) Near-IR dyes in three-color volumetric capillary cytometry: Cell analysis with 633- and 785-nm laser excitation. Cytometry 21: 120–128.

    Article  PubMed  Google Scholar 

  19. Mader O, Reiner K, Egelhaaf H-J, Fischer R, Brock R (2004) Structure-property analysis of pentamethine indocyanine dyes identification of a new dye for life-science applications. Bioconjugate Chem 15: 70–78.

    Article  CAS  Google Scholar 

  20. Reichardt C, Engel HD (1988) An improved method for the synthesis of 1,3,3-trialkyl-2-alkylideneindolines. Chem Ber 121: 1009–1011.

    Article  CAS  Google Scholar 

  21. Shiobasa Y, Ishida S (1960) Malonaldehyde dianil. Yamanouchi Pharmaceuticals Patent, Japan JP35 017020.

    Google Scholar 

  22. Kiprianov AI, Buryak VYu (1972) Cyanine dyes with two conjugated chromophores. XVIII. Effect of steric hindrance on the absorption spectra of bis(hemicyanines) from isomeric phenylenediamines with methyl groups on the benzene rings. Zh Org Khim 8: 1707–1712.

    CAS  Google Scholar 

  23. Ball CA, Osuna R, Ferguson KC, Johnson RC (1992) Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 174: 8043–805.

    PubMed  CAS  Google Scholar 

  24. Bradley MD, Beach MB, de Koning AP, Pratt TS, Osuna R (2007) Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology 153: 2922–2940.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Wan-Joong Kim and Nuraly K. Avliyakulov contributed equally to this study. We thank the Dean’s Office of the David Geffen School of Medicine at UCLA and Senior Associate Dean Leonard Rome for the generous and continuing support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Haykinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jung, M.E., Kim, WJ., Avliyakulov, N.K., Oztug, M., Haykinson, M.J. (2012). Synthesis and Validation of Cyanine-Based Dyes for DIGE. In: Cramer, R., Westermeier, R. (eds) Difference Gel Electrophoresis (DIGE). Methods in Molecular Biology, vol 854. Humana Press. https://doi.org/10.1007/978-1-61779-573-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-573-2_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-572-5

  • Online ISBN: 978-1-61779-573-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics