Skip to main content

Cotton Pistil Drip Transformation Method

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 847))

Abstract

Conventional plant transformation typically includes preparation of competent plant cells or tissues, delivery of foreign genes into cells, transformed cell selection with stable incorporated foreign genes, and regeneration of transformed cells into intact plants. This process traditionally relies on tissue culture, and cotton has not been an exception to this paradigm. Though the commercialization of transgenic cotton is a resounding success, cotton transformation, which is the first step in producing transgenic cotton, is a burdensome process since there is a very long tissue culture process and a limited number of cultivars that can be regenerated. An improved process which is easier to handle and more genotype independent could efficiently generate more transgenic plants and allow meaningful analyses of gene function and transgenic plants. Cotton pistil drip by inoculating Agrobacterium tumefaciens onto the pistil after pollination gave rise to stable transformants. Since this transformation process in cotton occurs following pollination and during fertilization (postanthesis) but not during preanthesis as in Arabidopsis, the mechanism by which Agrobacterium enters plant cells and integrates into the cotton genome may differ from that in Arabidopsis. This chapter provides the detailed protocol for pistil drip, a simple in planta transformation method without the plant tissue culture process.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wu, K-M., Lu, Y-H., Feng, H-Q., Jiang, Y-Y., and Zhao, J-Z. (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321, 1676–1678.

    Article  PubMed  CAS  Google Scholar 

  2. Umbeck, P., Johnson, G., Barton, K., and Swain, W. (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio/Technol. 5, 263–266.

    Article  CAS  Google Scholar 

  3. Firoozabady, E., DeBoer, D. L., Merlo, D. J., Halk, E. L., Amerson, L. N., Rashka, K. E., and Murray, E. E. (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol. Biol. 10, 105–116.

    CAS  Google Scholar 

  4. Wilkins, T., Mishra, R., and Trolinder, N. (2004) Agrobacterium-mediated transformation and regeneration of cotton. J. Food Agric. Env. 2, 179–187.

    Google Scholar 

  5. Sunilkumar, G. and Rathore, K. S. (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol. Breeding 8, 37–52.

    Article  CAS  Google Scholar 

  6. Cousins, Y. L., Lyon, B. R., and Llewellyn, D. J. (1991) Transformation of an Australian cotton cultivar: prospects for cotton improvement through genetic engineering. Aust. J. Plant Physiol. 18, 481–494.

    Article  CAS  Google Scholar 

  7. Wu, J., Luo, X., Wang, Z., Tian, Y., Liang, A., and Sun, Y. (2008) Transgenic cotton expressing synthesized scorpion insect toxin AaHIT gene confers enhanced resistance to cotton bollworm (Heliothis armigera) larvae. Biotechnol. Lett. 30, 547–554.

    Article  PubMed  CAS  Google Scholar 

  8. Zhu, S. W., Gao, P., Sun, J. S., Wang, H. H., Luo, X. M., Jiao, M. Y., Wang, Z. Y., and Xia, G. X. (2006) Genetic transformation of green-colored cotton. In Vitro Cell. Dev. – Pl. 42, 439–444.

    Google Scholar 

  9. Leelavathi, S., Sunnichan, V. G., Kumria, R., Vijaykanth, G. P., Bhatnagar, R. K., and Reddy, V. S. (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep. 22, 465–470.

    Article  PubMed  CAS  Google Scholar 

  10. Jin, S. X., Zhang, X. L., Liang, S. G., Nie, Y. C., Guo, X. P., and Huang, C. (2005) Factors affecting transformation efficiency of embryogenic callus of upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult. 81, 229–237.

    Article  CAS  Google Scholar 

  11. Wu, S. J., Wang, H. H., Li, F. F., Chen, T. Z., Zhang, J., Jiang, Y. J., Ding, Y., Guo, W. Z., and Zhang, T.Z. (2008) Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton via efficient selection and timely subculture of somatic embryos. Plant Mol. Biol. Rep. 26, 174–185.

    Article  CAS  Google Scholar 

  12. Wu, J., Zhang, X., Nie, Y., and Luo, X. (2005) High-efficiency transformation of Gossypium hirsutum embryogenic calli mediated by Agrobacterium tumefaciens and regeneration of insect-resistant plants. Plant Breeding 124, 142–146.

    Article  CAS  Google Scholar 

  13. McCabe, D. and Martinell, B. (1993) Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/Technol. 11, 596–598.

    Article  Google Scholar 

  14. Aragão, F. J. L., Vianna, G. R., Carvalheira, S. B. R. C., and Rech, E. L. (2005) Germ line genetic transformation in cotton (Gossypium hirsutum L.) by selection of transgenic meristematic cells with a herbicide molecule. Plant Sci. 168, 1227–1233.

    Article  Google Scholar 

  15. Banerjee, A. K., Agrawal, D. C., Nalawade, S. M., and Krishnamurthy, K. V. (2002) Transient expression of β-glucuronidase in embryo axes of cotton by Agrobacterium and particle bombardment methods. Biol. Plant. 45, 359–365.

    Article  CAS  Google Scholar 

  16. Sanjaya, V. V. S., Prasad, V., Kirthi, N., Maiya, S., Savithri, H., and Sita, G. (2005) Development of cotton transgenics with antisense AV2 gene for resistance against cotton leaf curl virus (CLCuD) via Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult. 81, 55–63.

    Article  CAS  Google Scholar 

  17. Satyavathi, V.V., Prasad, V., Lakshmi, B. G., and Sita, G. L. (2002) High efficiency transformation protocol for three Indian cotton varieties via Agrobacterium tumefaciens. Plant Sci. 162, 215–223.

    Article  CAS  Google Scholar 

  18. Gould, J. and Magallanes-Cedeno, M. (1998) Adaptation of cotton shoot apex culture to Agrobacterium-mediated transformation. Plant Mol. Biol. Rep. 16, 1–10.

    Article  Google Scholar 

  19. Keshamma, E., Rohini, S., Rao, K., Madhusudhan, B., and Kumar, M. (2008) Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J. Cotton Sci. 12, 264–272.

    CAS  Google Scholar 

  20. Rech, E. L., Vianna, G. R., and Aragão, F. J. (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nature Protoc. 3, 410–418.

    Article  CAS  Google Scholar 

  21. Ni, M., Tepperman, J. M., and Quail, P. H. (1998) PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95, 657–668.

    Article  PubMed  CAS  Google Scholar 

  22. Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

  23. Curtis, I. S. and Nam, H. G. (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method – plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res. 10, 363–371.

    Article  PubMed  CAS  Google Scholar 

  24. Li, X., Wang, X. D., Zhao, X., and Dutt, Y. (2004) Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Rep. 22, 691–697.

    Article  PubMed  CAS  Google Scholar 

  25. Jensen, W. A. and Fisher, D. B. (1967) Cotton embryogenesis: The entrance and discharge of the pollen tube in the embryo sac. Planta 78, 158–183.

    Article  Google Scholar 

  26. Sheikholeslam, S. N. and Weeks, D. P. (1987) Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol. Biol. 8, 291–298.

    Article  CAS  Google Scholar 

  27. Ashby, A. M., Watson, M. D., and Shaw, C. H. (1987) A Ti-plasmid determined function is responsible for chemotaxis of Agrobacterium tumefaciens towards the plant wound product acetosyringone. FEMS Microbiol. Lett. 41, 189–192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, T., Chen, T. (2012). Cotton Pistil Drip Transformation Method. In: Dunwell, J., Wetten, A. (eds) Transgenic Plants. Methods in Molecular Biology, vol 847. Humana Press. https://doi.org/10.1007/978-1-61779-558-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-558-9_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-557-2

  • Online ISBN: 978-1-61779-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics