Skip to main content

Organophosphorus Hydrolase: A Multifaceted Plant Genetic Marker Which Is Selectable, Scorable, and Quantifiable in Whole Seed

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 847))

Abstract

Organophosphorus hydrolase (OPH, EC 3.1.8.1) provides a novel function as an alternative genetic marker system for use in many types of plant transformations. OPH is a high-capacity hydrolase with multiple organophosphorus substrates, many of which are neurotoxins and thus used extensively as pesticides. This spectrum of organophosphates includes compounds that are phytotoxic as well as those that are hydrolyzed to products that are easily detected visually without significant disruption of plant health. This dichotomy gives OPH the features of both a selectable marker as well as that of a scorable marker system, and these characteristics have been tested at several stages during the plant transformation and regeneration process. Finally, it is possible to quantify hydrolytic activity in the seed without interfering with its subsequent growth and regeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vega, J. M., Yu, W., Kennon, A. R., Chen, X. et al. (2008) Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep. 27, 297–305.

    Article  PubMed  CAS  Google Scholar 

  2. Miki, B, and McHugh, S. (2004) Selectable marker genes in transgenic plants: applications, alternatives, and biosafety. J. Biotechnol. 107, 193–232.

    Article  PubMed  CAS  Google Scholar 

  3. Fraley, R. T., Rogers, S. G., Horsch, R. B. et al. (1983) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80, 4803–4807.

    Article  PubMed  CAS  Google Scholar 

  4. Carrer, H., Hockenberry, T. N., Svab, Z. et al (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241, 49–56.

    Article  PubMed  CAS  Google Scholar 

  5. Waldron, C., Murphy, E. B., Roberts, J. L. et al (1985) Resistance to hygromycin B. Plant Mol. Biol. 5, 103–108.

    Article  CAS  Google Scholar 

  6. De Block, M., De Brouwer, D., and Tenning, P. (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in transgenic plants. Plant Physiol. 91, 694–701.

    Article  PubMed  Google Scholar 

  7. Zhou, H., Arrowsmith, J. W., Fromm, M. E. et al. (1995) Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 15, 159–163.

    CAS  Google Scholar 

  8. Stougaard, J. (1993) Substrate-dependent negative selection in plants using a bacterial cytosine deaminase gene. Plant J. 3, 755–761.

    Article  CAS  Google Scholar 

  9. Goldstein, D. A., Tinland, B., Gilbertson, L. A. et al. (2005) Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J. Appl. Microbiol. 9, 7–23.

    Article  Google Scholar 

  10. Duke, S. O. (2005) Taking stock of herbicide-resistant crops ten years after introduction. Pest. Manag. Sci. Spec. Iss. Herbicide-resistant Crops from Biotechnology. 61, 211–218.

    CAS  Google Scholar 

  11. McHughen, A. (1989) Agrobacterium mediated transfer of chlorsulfuron resistance to commercial flax cultivars. Plant Cell Rep. 8, 445–449.

    Article  CAS  Google Scholar 

  12. de Ruijter, N. C. A., Verhees, J., van Leeuwen, W. et al. (2003) Evaluation and comparison of the GUS, LUC, and GFP reporter system for gene expression studies in plants. Plant Biol. 5, 103–115.

    Article  Google Scholar 

  13. Raushel, F. M. (2002) Bacterial detoxification of organophosphate nerve agents. Curr. Opin. Microbiol. 5, 288–295.

    Article  PubMed  CAS  Google Scholar 

  14. Grimsley, J. K., Scholtz J. M., Pace C. N. et al (1997) Organophosphorus hydrolase is a remarkably stable enzyme that unfolds through a homodimeric intermediate. Biochemistry-US 36, 14366–14374.

    Article  CAS  Google Scholar 

  15. Menges, R. M. and Hubbard, J. L. (1970) Phytotoxicity of bensulide and trifluralin in several soils. Weed Sci. 18, 244–247.

    CAS  Google Scholar 

  16. Katagi, T. (1993) Photochemistry of organophosphorus herbicide butamiphos. J. Agr. Food Chem. 41, 496–501.

    Article  CAS  Google Scholar 

  17. Morejohn, L. C. and Fosket, D. E. (1984) Inhibition of plant microtubule polymerization in vitro by the phosphoric amide herbicide amiprophos-methyl. Science 224, 874–876.

    Article  PubMed  CAS  Google Scholar 

  18. Buchner, B. and Jacoves, E. (1967) O-(2-Napthyl) Phosphorothioates. Continental Oil Co. US Patent 3328494.

    Google Scholar 

  19. Harcourt, R. L., Horne, I., Sutherland, T. D. et al. (2002) Development of a simple and sensitive fluorimetric method for isolation of coumaphos-hydrolysing bacteria. Lett. Appl. Microbiol. 34, 263–268.

    Article  PubMed  CAS  Google Scholar 

  20. McDaniel, C. S. and Wild, J. R. (1988) Detection of organophosphorus pesticide detoxifying bacterial colonies, using UV-photography of parathion-impregnated filters. Arch. Environ. Con. Tox. 17, 189–194.

    Article  CAS  Google Scholar 

  21. Dumas, D. P., Caldwell, S. R., Wild, J. R. et al. (1989) Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J. Biol. Chem. 264, 19659–19665.

    PubMed  CAS  Google Scholar 

  22. Pinkerton, T. S. (2004) The recombinant expression and potential applications of bacterial organophosphate hydrolase in Zea Mays L., Ph.D. Dissertation, Texas A&M University, USA.

    Google Scholar 

  23. Salbreck, G., Schonowsky, H., Horlein, G. et al. (1981) Herbicidal Agents. Hoechst Aktiengesellschaft. US Patent 4278461.

    Google Scholar 

  24. Patel, N. R. (1984) N-Isopropylcarbanilylmethyl dithiophosphates as pre-emergent herbicides. US Patent 4453965.

    Google Scholar 

  25. Yoshida, R., Satomi, T., Mukai, K. et al. (1977) Amide phosphorothiolate herbicides. Sumitomo Chemical Company. US Patent 4023956.

    Google Scholar 

  26. Aya, M., Saito, J., Kume, T. et al (1979) Organic (Thio) Phosphoric Acid Ester Compounds and Herbicidal Compositions. Bayer Aktiengesellschaft. US Patent 4059430.

    Google Scholar 

  27. diSoudi, B., Grimsley, J. K., Lai, K. et al. (1999) Modification of near active site residues in organophosphate hydrolase reduces metal stoichiometry and alters substrate specificity. Biochemistry-US 38, 2866–2872.

    Article  Google Scholar 

  28. Zhao, J. H. and Zhao, D. G. (2009) Transient expression of organophosphorus hydrolase to enhance the degrading activity of tomato fruit on coumaphos. J. Zhejiang Univ. Science B 10, 142–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pinkerton, T.S., Wild, J.R., Howard, J.A. (2012). Organophosphorus Hydrolase: A Multifaceted Plant Genetic Marker Which Is Selectable, Scorable, and Quantifiable in Whole Seed. In: Dunwell, J., Wetten, A. (eds) Transgenic Plants. Methods in Molecular Biology, vol 847. Humana Press. https://doi.org/10.1007/978-1-61779-558-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-558-9_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-557-2

  • Online ISBN: 978-1-61779-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics