Skip to main content

Gene Deletion in Candida albicans Wild-Type Strains Using the SAT1-Flipping Strategy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 845))

Abstract

Targeted gene inactivation is an important method to investigate gene function. In the diploid yeast Candida albicans, the generation of homozygous knock-out mutants requires the sequential replacement of both alleles of a gene by a selection marker. Targeted gene deletion is often performed in auxotrophic host strains, which are rendered prototrophic after the insertion of appropriate nutritional marker genes into the target locus. The SAT1-flipping strategy described in this chapter allows gene deletion in prototrophic C. albicans wild-type strains with the help of a recyclable dominant selection marker. The SAT1 flipper cassette used for this purpose consists of the caSAT1 marker, which confers resistance to the antibiotic nourseothricin, and the caFLP gene, which encodes the site-specific recombinase FLP. The addition of flanking sequences of the target gene allows specific genomic insertion of the SAT1 flipper cassette by homologous recombination and selection of nourseothricin-resistant transformants. Expression of the FLP recombinase results in subsequent excision of the cassette, which is bordered by direct repeats of the FLP recognition sequence FRT, from the genome. The homozygous mutants obtained after two rounds of insertion and recycling of the SAT1 flipper cassette differ from the wild-type parental strain only by the absence of the target gene and can be used for the inactivation of additional genes and the generation of complemented strains using the same strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Noble, S.M., Johnson, A.D. (2007) Genetics of Candida albicans, a diploid human fungal pathogen. Annu Rev Genet 41, 193–211.

    Article  CAS  Google Scholar 

  2. Dunkel, N., Blass, J., Rogers, P.D., Morsch-häuser, J. (2008) Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol Microbiol 69, 827–840.

    Article  CAS  Google Scholar 

  3. Morschhäuser, J., Barker, K.S., Liu, T.T., Blaß-Warmuth, J., Homayouni, R., Rogers, P.D. (2007) The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 3, e164.

    Article  Google Scholar 

  4. Morschhäuser, J., Michel, S., Staib, P. (1999) Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol Microbiol 32, 547–556.

    Article  Google Scholar 

  5. Wirsching, S., Michel, S., Morschhäuser, J. (2000) Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol 36, 856–865.

    Article  CAS  Google Scholar 

  6. Brand, A., MacCallum, D.M., Brown, A.J., Gow, N.A., Odds, F.C. (2004) Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 3, 900–909.

    Article  CAS  Google Scholar 

  7. Cheng, S., Nguyen, M.H., Zhang, Z., Jia, H., Handfield, M., Clancy, C.J. (2003) Evaluation of the roles of four Candida albicans genes in virulence by using gene disruption strains that express URA3 from the native locus. Infect Immun 71, 6101–6103.

    Article  CAS  Google Scholar 

  8. Lay, J., Henry, L.K., Clifford, J., Koltin, Y., Bulawa, C.E., Becker, J.M. (1998) Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66, 5301–5306.

    Article  CAS  Google Scholar 

  9. Wirsching, S., Michel, S., Köhler, G., Morsch-häuser, J. (2000) Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinical Candida albicans strains is caused by mutations in a trans-regulatory factor. J Bacteriol 182, 400–404.

    Article  CAS  Google Scholar 

  10. Köhler, G.A., Gong, X., Bentink, S., Theiss, S., Pagani, G.M., Agabian, N., Hedstrom, L. (2005) The functional basis of mycophenolic acid resistance in Candida albicans IMP dehydrogenase. J Biol Chem 280, 11295–11302.

    Article  Google Scholar 

  11. Köhler, G.A., White, T.C., Agabian, N. (1997) Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179, 2331–2338.

    Article  Google Scholar 

  12. Reuß, O., Vik, Å., Kolter, R., Morschhäuser, J. (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119–127.

    Article  Google Scholar 

  13. Krügel, H., Fiedler, G., Haupt, I., Sarfert, E., Simon, H. (1988) Analysis of the nourseothricin-resistance gene (nat) of Streptomyces noursei. Gene 62, 209–217.

    Article  Google Scholar 

  14. Heim, U., Tietze, E., Weschke, W., Tschäpe, H., Wobus, U. (1989) Nucleotide sequence of a plasmid born streptothricin-acetyl-transferase gene (sat-1). Nucleic Acids Res 17, 7103.

    Article  CAS  Google Scholar 

  15. Joshi, P.B., Webb, J.R., Davies, J.E., McMaster, W.R. (1995) The gene encoding streptothricin acetyltransferase (sat) as a selectable marker for Leishmania expression vectors. Gene 156, 145–149.

    Article  CAS  Google Scholar 

  16. Coste, A., Turner, V., Ischer, F., Morschhäuser, J., Forche, A., Selmecki, A., Berman, J., Bille, J., Sanglard, D. (2006) A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172, 2139–2156.

    Article  CAS  Google Scholar 

  17. Dabas, N., Morschhäuser, J. (2007) Control of ammonium permease expression and filamentous growth by the GATA transcription factors GLN3 and GAT1 in Candida albicans. Eukaryot Cell 6, 875–888.

    Article  CAS  Google Scholar 

  18. Dabas, N., Morschhäuser, J. (2008) A transcription factor regulatory cascade controls secreted aspartic protease expression in Candida albicans. Mol Microbiol 69, 586–602.

    Article  CAS  Google Scholar 

  19. Dunkel, N., Liu, T.T., Barker, K.S., Homayouni, R., Morschhäuser, J., Rogers, P.D. (2008) A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot Cell 7, 1180–1190.

    Article  CAS  Google Scholar 

  20. Lermann, U., Morschhäuser, J. (2008) Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology 154, 3281–3295.

    Article  CAS  Google Scholar 

  21. Ramírez-Zavala, B., Reuß, O., Park, Y.-N., Ohlsen, K., Morschhäuser, J. (2008) Environmental induction of white-opaque switching in Candida albicans. PLoS Pathog 4, e1000089.

    Article  Google Scholar 

  22. Reuß, O., Morschhäuser, J. (2006) A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Mol Microbiol 60, 795–812.

    Article  Google Scholar 

  23. Staib, P., Lermann, U., Blaß-Warmuth, J., Degel, B., Würzner, R., Monod, M., Schirmeister, T., Morschhäuser, J. (2008) Tetracycline-inducible expression of individual secreted aspartic proteases in Candida albicans allows isoenzyme-specific inhibitor screening. Antimicrob Agents Chemother 52, 146–156.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Work in our laboratory is supported by the Deutsche Forschungs­gemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Morschhäuser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sasse, C., Morschhäuser, J. (2012). Gene Deletion in Candida albicans Wild-Type Strains Using the SAT1-Flipping Strategy. In: Brand, A., MacCallum, D. (eds) Host-Fungus Interactions. Methods in Molecular Biology, vol 845. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-61779-539-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-539-8_1

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-61779-538-1

  • Online ISBN: 978-1-61779-539-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics