Skip to main content

Extraction of DNA from Paleofeces

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 840))

Abstract

Paleofeces are the nonmineralized remains of dung from extant and extinct fauna. They represent a surprisingly large proportion of fossil remains recovered from cave sites across the world. Paleofeces contain the DNA of the defecator as well as the DNA of ingested plant and animal remains. To successfully extract DNA from paleofeces, a balance must be achieved between the minimization of DNA loss during extraction and the removal of coeluates that would otherwise inhibit the Taq DNA polymerase during downstream applications. Here we present a simplified version of a protocol to extract DNA from paleofecal remains.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Martin P (1975) Sloth droppings. Nat Hist 74–78

    Google Scholar 

  2. Sobolik K (2003) Archaeobiology. AltaMira, Walnut Creek

    Google Scholar 

  3. Hofreiter M, Mead JI, Martin P, Poinar HN (2003) Molecular caving. Curr Biol 13:R693–R695

    Article  PubMed  CAS  Google Scholar 

  4. Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MT, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A (2003) Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:791–795

    Article  PubMed  CAS  Google Scholar 

  5. Cerami A, Vlassara H, Brownlee M (1987) Glucose and aging. Sci Am 256:90–96

    Article  PubMed  CAS  Google Scholar 

  6. Vasan S, Zhang X, Zhang X, Kapurniotu A, Bernhagen J, Teichberg S, Basgen J, Wagle D, Shih D, Terlecky I, Bucala R, Cerami A, Egan J, Ulrich P (1996) An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382:275–278

    Article  PubMed  CAS  Google Scholar 

  7. Wolffenbuttel BH, Boulanger CM, Crijns FR, Huijberts MS, Poitevin P, Swennen GN, Vasan S, Egan JJ, Ulrich P, Cerami A, Levy BI (1998) Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc Natl Acad Sci U S A 95:4630–4634

    Article  PubMed  CAS  Google Scholar 

  8. Poinar GO Jr (1998) Trace fossils in amber: a new dimension for the ichnologist. Ichnos 6:47–52

    Article  Google Scholar 

  9. Hofreiter M, Poinar HN, Spaulding WG, Bauer K, Martin PS, Possnert G, Pääbo S (2000) A molecular analysis of ground sloth diet through the last glaciation. Mol Ecol 9:1975–1984

    Article  PubMed  CAS  Google Scholar 

  10. Poinar HN, Kuch M, Sobolik KD, Barnes I, Stankiewicz AB, Kuder T, Spaulding WG, Bryant VM, Cooper A, Pääbo S (2001) A molecular analysis of dietary diversity for three archaic Native Americans. Proc Natl Acad Sci U S A 98:4317–4322

    Article  PubMed  CAS  Google Scholar 

  11. Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    Article  PubMed  Google Scholar 

  12. Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, Evershed RP, Possnert G, Pääbo S (1998) Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281:402–406

    Article  PubMed  CAS  Google Scholar 

  13. King C, Debruyne R, Kuch M, Schwarz C, Poinar H (2009) A quantitative approach to detect and overcome PCR inhibition in ancient DNA extracts. Biotechniques 47:941–949

    Article  PubMed  CAS  Google Scholar 

  14. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503

    PubMed  CAS  Google Scholar 

  15. Fujiwara M, Yamamoto F, Okamoto K, Shiokawa K, Nomura R (2005) Adsorption of duplex DNA on mesoporous silicas: possibility of inclusion of DNA into their mesopores. Anal Chem 77:8138–8145

    Article  PubMed  CAS  Google Scholar 

  16. Melzak K, Sherwood C, Turner R, Haynes C (1996) Driving forces for DNA adsorption to silica in perchlorate solutions. J Colloid Interface Sci 181:635–644

    Article  CAS  Google Scholar 

  17. Rohland N, Hofreiter M (2007) Comparison and optimization of ancient DNA extraction. Biotechniques 42:343–352

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Poinar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kuch, M., Poinar, H. (2012). Extraction of DNA from Paleofeces. In: Shapiro, B., Hofreiter, M. (eds) Ancient DNA. Methods in Molecular Biology, vol 840. Humana Press. https://doi.org/10.1007/978-1-61779-516-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-516-9_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-515-2

  • Online ISBN: 978-1-61779-516-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics