Skip to main content

Characterization of Plant-Fungal Interactions Involving Necrotrophic Effector-Producing Plant Pathogens

  • Protocol
  • First Online:
Book cover Plant Fungal Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 835))

Abstract

Recently, great strides have been made in the area of host-pathogen interactions involving necrotrophic fungi. In this article we describe a method to identify, produce, and characterize effectors that are important in host–necrotrophic fungal pathogen interactions, and to genetically characterize the interactions. The main strength of this method is the combined use of pathogen inoculation, a pathogen culture filtrate bioassay, and genetic analysis of susceptibility and sensitivity in segregating host-mapping populations. These methods have been successfully used to identify several Stagonospora nodorum necrotrophic effectors and to characterize the genetic and phenotypic effects of individual host–effector interactions in the wheat-S. nodorum system. S. nodorum isolates that induce a differential response on two lines are used to produce culture filtrates that contain necrotrophic effectors while the wheat lines differing in reaction to the pathogen are used to develop a mapping population. The wheat population is used to develop DNA marker-based genetic linkage maps and culture filtrates are infiltrated across the mapping population. Linkage and quantitative trait loci (QTL) analysis is used to identify regions of the wheat genome harboring genes that govern sensitivity to necrotrophic effectors. The same populations are inoculated with the effector-producing isolate to determine the significance and proportion of disease explained by individual host gene–effector interactions. Additionally, from this information, differential lines that are sensitive to single effectors are developed for further purification and characterization of the effectors, eventually resulting in the identification, molecular cloning, and characterization of the effector genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu SS, Friesen TL, Cai XW (2004) Sources and genetic control of resistance to Stagonospora nodorum blotch in wheat. Recent Res Devel Genet Breeding 1:449–469

    Google Scholar 

  2. Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers J P, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, and Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA 107:13544–13549

    Article  PubMed  CAS  Google Scholar 

  3. Nagy ED, and Bennetzen JL (2008) Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster. Genome Res 18:1918–1923

    Article  PubMed  CAS  Google Scholar 

  4. Lorang JM, Sweat TA, Wolpert TJ (2007) Plant disease susceptibility conferred by a “resistance” gene. Proc Natl Acad Sci USA 104:14861–14866

    Article  PubMed  CAS  Google Scholar 

  5. Friesen TL, Faris JD (2010) Characterization of the wheat-Stagonospora nodorum disease system: What is the molecular basis of this quantitative necrotrophic disease interaction? Can J Plant Pathol 32:20–28

    Article  CAS  Google Scholar 

  6. Friesen TL, Faris JD, Solomon PS, Oliver RP (2008b) Host specific toxins: effectors of necrotrophic pathogenicity. Cell Micro 10:1421–1428

    Article  CAS  Google Scholar 

  7. Friesen, TL, Zhang, Z, Solomon, PS, Oliver, RP and Faris, JD (2008a) Characterization of the interaction of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene. Plant Physiol 146:682–693

    Article  PubMed  CAS  Google Scholar 

  8. Friesen TL, Stukenbrock EH, Liu ZH, Meinhardt SW, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38: 953–956

    Article  PubMed  CAS  Google Scholar 

  9. Friesen TL, Meinhardt SW, Faris JD (2007) The Stagonospora nodorum–wheat pathosystem involves multiple proteinaceous host selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J 51: 681–692

    Article  PubMed  CAS  Google Scholar 

  10. Liu ZH, Friesen TL, Meinhardt SW, Ali S, Rasmussen JB, Faris JD (2004) QTL analysis and mapping of resistance to Stagonospora nodorum leaf blotch in wheat. Phytopathology 94:1061–1067

    Article  PubMed  CAS  Google Scholar 

  11. Liu ZH, Friesen TL, Ling H, Meinhardt SW, Rasmussen JB, Faris JD (2006) The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system. Genome 49:1265–1273

    Article  PubMed  CAS  Google Scholar 

  12. Abeysekara NS, Friesen TL, Keller B, Faris JD (2009) Identification and characterization of a novel host-toxin interaction in the wheat - Stagonospora nodorum pathosystem. Theor Appl Genet 120:117–126

    Article  PubMed  CAS  Google Scholar 

  13. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  14. Joehanes R, Nelson JC (2008) QGene 40, an extensible Java QTL-analysis platform. Bioinformatics 24: 2788–2789

    Article  PubMed  CAS  Google Scholar 

  15. Manly KF, Cudmore RH Jr, Meer JM (2001) MAP MANAGER QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  16. Wang S, Basten CJ, Zeng Z-B (2010) Windows QTL Cartographer 25 Department of Statistics, North Carolina State University, Raleigh, NC (http://statgenncsuedu/qtlcart/WQTLCarthtm)

  17. Lincoln S, Daly M, Lander E 1992 Mapping genes controlling quantitative traits with MAPMAKER/QTL11. Whitehead Institute Technical Report, Cambridge, Massachusetts

    Google Scholar 

  18. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  19. Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  20. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L). Funct Intergr Genomics 4:12–25

    Article  CAS  Google Scholar 

  21. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  22. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  23. Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051

    Article  PubMed  CAS  Google Scholar 

  24. Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  PubMed  CAS  Google Scholar 

  25. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  26. Faris JD, Gill BS (2002) Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome 45: 706–718

    Article  PubMed  CAS  Google Scholar 

  27. Haen KM, Lu HJ, Friesen TL, and Faris, JD (2004) Genomic targeting and high-resolution mapping of the Tsn1 gene in wheat. Crop Sci 44:951–962

    Article  CAS  Google Scholar 

  28. Liu ZH, Anderson JA, Hu JG, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794

    Article  PubMed  CAS  Google Scholar 

  29. Chu C-G, Xu SS, Friesen TL, Faris JD (2008) Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breeding 22:251–266

    Article  CAS  Google Scholar 

  30. Lu HJ, Fellers JP, Friesen TL, Meinhardt SW, Faris, JD (2006) Genomic analysis and marker development for the Tsn1 locus in wheat using bin-mapped ESTs and flanking BAC contigs. Theor Appl Genet 112: 1132– 1142

    Article  PubMed  CAS  Google Scholar 

  31. Reddy L, Friesen TL, Meinhardt SW, Chao S, Faris JD (2008) Genomic analysis of the Snn1 locus on wheat chromosome arm 1BS and the identification of candidate genes. Plant Genome 1:55–66

    Article  CAS  Google Scholar 

  32. Zhang Z, Friesen TL, Simons KJ, Xu SS, Faris JD (2009) Development, identification, and validation of markers for marker assisted selection against Stagonospora nodorum toxin sensitivity genes Tsn1 and Snn2 in wheat. Mol Breeding 23:35–49

    Article  Google Scholar 

  33. Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo M-C, Dubcovsky J (2008) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L) cultivars. Mol Breeding 23:23–33

    Article  Google Scholar 

  34. Faris JD, Friebe B, Gill BS (2004) Genome Mapping In: Encyclopedia of Grain Science Edited by C Wrigley Elsevier, San Diego, CA pp 7–16

    Google Scholar 

  35. Liu S, Chao S, Anderson JA (2008) New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet 118:177–183

    Article  PubMed  CAS  Google Scholar 

  36. Matzk F, Mahn A (1994) Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed 113:125–129

    Article  Google Scholar 

  37. Paterson AH (1996) Making Genetic Maps In: Paterson, AH (ed) in Genome Mapping in Plants, pp 23-39 R G Landes Company, Austin, TX

    Google Scholar 

  38. Schägger H (2006) Tricine-SDS-PAGE. Nature Protocols 1: 16–22

    Article  PubMed  Google Scholar 

  39. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy L. Friesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Friesen, T.L., Faris, J.D. (2012). Characterization of Plant-Fungal Interactions Involving Necrotrophic Effector-Producing Plant Pathogens. In: Bolton, M., Thomma, B. (eds) Plant Fungal Pathogens. Methods in Molecular Biology, vol 835. Humana Press. https://doi.org/10.1007/978-1-61779-501-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-501-5_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-500-8

  • Online ISBN: 978-1-61779-501-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics