Skip to main content

How to Analyze Bacterial Toxins Targeting Rho GTPases

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 827))

Abstract

Bacterial pathogens developed several strategies to overcome defense systems of eukaryotic hosts. Within the infection process, they need to attach to and cross through epithelial layers, escape from the innate and adaptive immune response, and find a physiological niche to survive. One target to modulate the host–pathogen interaction in order to deceit pathogen resistance is the actin cytoskeleton and its regulators: the family of Rho GTPases. Some bacterial toxins catalyze a covalent modification of Rho GTPases to keep these molecular switches in a constitutive active or inactive state. This leads to rearrangement of the actin cytoskeleton. Toxin-treated cells show typical morphological changes depending on substrate specificity and action of the toxins. In this chapter, we discuss the classes of bacterial toxins based on their mode of action, their recombinant expression (specifically CNF1), intoxication and subsequent morphological changes of the actin cytoskeleton, and cell shape.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Aktories, K., and Barbieri, J. T. (2005) Bacterial cytotoxins: targeting eukaryotic switches. Nat Rev Microbiol 3, 397–410.

    Article  PubMed  CAS  Google Scholar 

  2. Jank, T., and Aktories, K. (2008) Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol. 16, 222–229.

    Article  PubMed  CAS  Google Scholar 

  3. Sorg, I., Goehring, U. M., Aktories, K., and Schmidt, G. (2001) Recombinant Yersinia YopT leads to uncoupling of RhoA-effector interaction. Infect Immun 69, 7535–7543.

    Article  PubMed  CAS  Google Scholar 

  4. Aepfelbacher, M., Zumbihl, R., and Heesemann, J. (2005) Modulation of Rho GTPases and the actin cytoskeleton by YopT of Yersinia. Curr Top Microbiol Immunol 291, 167–175.

    Article  PubMed  CAS  Google Scholar 

  5. Genth, H., Gerhard, R., Maeda, A., Amano, M., Kaibuchi, K., Aktories, K., and Just, I. (2003) Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-guanine nucleotide dissociation inhibitor-1 complex. J Biol Chem 278, 28523–28527.

    Article  PubMed  CAS  Google Scholar 

  6. Aktories, K., Wilde, C., and Vogelsgesang, M. (2004) Rho-modifying C3-like ADP-ribosyltransferases. Rev Physiol Biochem Pharmacol 152, 1–22.

    Article  PubMed  CAS  Google Scholar 

  7. Aili, M., Telepnev, M., Hallberg, B., Wolf-Watz, H., and Rosqvist, R. (2003) In vitro GAP activity towards RhoA, Rac1 and Cdc42 is not a prerequisite for YopE induced HeLa cell cytotoxicity. Microb Pathog 34, 297–308.

    Article  PubMed  CAS  Google Scholar 

  8. Andor, A., Trulzsch, K., Essler, M., Roggenkamp, A., Wiedemann, A., Heesemann, J., and Aepfelbacher, M. (2001) YopE of Yersinia, a GAP for Rho GTPases, selectively modulates Rac-dependent actin structures in endothelial cells. Cell Microbiol 3, 301–310.

    Article  PubMed  CAS  Google Scholar 

  9. Von Pawel-Rammingen, U., Telepnev, M. V., Schmidt, G., Aktories, K., Wolf-Watz, H., and Rosqvist, R. (2000) GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 36, 737–748.

    Article  Google Scholar 

  10. Lerm, M., Selzer, J., Hoffmeyer, A., Rapp, U. R., Aktories, K., and Schmidt, G. (1999) Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1: activation of c-Jun N-terminal kinase in HeLa cells. Infect Immun 67, 496–503.

    PubMed  CAS  Google Scholar 

  11. Schmidt, G., Sehr, P., Wilm, M., Selzer, J., Mann, M., and Aktories, K. (1997) Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387, 725–729.

    Article  PubMed  CAS  Google Scholar 

  12. Hoffmann, C., Pop, M., Leemhuis, J., Schirmer, J., Aktories, K., and Schmidt, G. (2004) The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J Biol Chem 279, 16026–16032.

    Article  PubMed  CAS  Google Scholar 

  13. Horiguchi, Y., Inoue, N., Masuda, M., Kashimoto, T., Katahira, J., Sugimoto, N., and Matsuda, M. (1997) Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP-binding protein Rho. Proc Natl Acad Sci USA 94, 11623–11626.

    Article  PubMed  CAS  Google Scholar 

  14. Huelsenbeck, S. C., May, M., Schmidt, G., and Genth, H. (2009) Inhibition of cytokinesis by Clostridium difficile toxin B and cytotoxic necrotizing factors--reinforcing the critical role of RhoA in cytokinesis. Cell Motil Cytoskeleton 66, 967–975.

    Article  PubMed  CAS  Google Scholar 

  15. Friebel, A., Ilchmann, H., Aepfelbacher, M., Ehrbar, K., Machleidt, W., and Hardt, W. D. (2001) SopE and SopE2 from Salmonella typhimurium activate different sets of Rho GTPases of the host cell. J Biol Chem 276, 34035–34040.

    Article  PubMed  CAS  Google Scholar 

  16. Knust, Z., Blumenthal, B., Aktories, K., and Schmidt, G. (2009) Cleavage of Escherichia coli cytotoxic necrotizing factor 1 is required for full biologic activity. Infect Immun 77, 1835–1841.

    Article  PubMed  CAS  Google Scholar 

  17. Barth, H., Aktories, K., Popoff, M. R., and Stiles, B. G. (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68, 373–402.

    Article  PubMed  CAS  Google Scholar 

  18. Barth, H., Blocker, D., and Aktories, K. (2002) The uptake machinery of clostridial actin ADP-ribosylating toxins--a cell delivery system for fusion proteins and polypeptide drugs. Naunyn Schmiedebergs Arch Pharmacol 366, 501–512.

    Article  PubMed  CAS  Google Scholar 

  19. Stratmann, H., Schwan, C., Orth, J. H., Schmidt, G., and Aktories, K. (2010) Pleiotropic role of Rac in mast cell activation revealed by a cell permeable Bordetella dermonecrotic fusion toxin. Cell Signal 22, 1124–1131.

    Article  PubMed  CAS  Google Scholar 

  20. Berks, B. C., Sargent, F., and Palmer, T. (2000) The Tat protein export pathway. Mol Microbiol 35, 260–274.

    Article  PubMed  CAS  Google Scholar 

  21. DerMardirossian, C. and Bokoch, G. M. (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15, 356–363.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudula Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bielek, H., Schmidt, G. (2012). How to Analyze Bacterial Toxins Targeting Rho GTPases. In: Rivero, F. (eds) Rho GTPases. Methods in Molecular Biology, vol 827. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-442-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-442-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-441-4

  • Online ISBN: 978-1-61779-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics