Skip to main content

Isolation of Human Male Germ-Line Stem Cells Using Enzymatic Digestion and Magnetic-Activated Cell Sorting

  • Protocol
  • First Online:
Germline Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 825))

Abstract

Mammalian spermatogenesis is a process whereby male germ-line stem cells (spermatogonial stem cells) divide and differentiate into sperm. Although a great deal of progress has been made in the isolation and characterization of spermatogonial stem cells (SSCs) in rodents, little is known about human SSCs. We have recently isolated human G protein-coupled receptor 125 (GPR125)-positive spermatogonia and GDNF family receptor alpha 1 (GFRA1)-positive spermatogonia using a 2-step enzymatic digestion and magnetic-activated cell sorting (MACS) from adult human testes. Cell purities of isolated human GPR125- and GFRA1-positive spermatogonia after MACS are greater than 95%, and cell viability is over 96%. The isolated GPR125- and GFRA1-positive spermatogonia coexpress GPR125, integrin, alpha 6 (ITGA6), THY1 (also known as CD90), GFRA1, and ubiquitin carboxyl-terminal esterase L1 (UCHL1), markers for rodent or pig SSCs/progenitors, suggesting that GPR125- and GFRA1-positive spermatogonia are phenotypically the SSCs in human testis. Human GPR125-positive spermatogonia can be cultured for 2 weeks with a remarkable increase in cell number. Immunocytochemistry further reveals that GPR125-positive spermatogonia can be maintained in an undifferentiated state in vitro. Collectively, the methods using enzymatic digestion and MACS can efficiently isolate and purify SSCs from adult human testis with consistent and high quality. The ability of isolating and characterizing human SSCs could provide a population of stem cells with high purity for mechanistic studies on human SSC self-renewal and differentiation as well as potential applications of human SSCs in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagano M, Brinster CJ, Orwig KE, Ryu BY, Avarbock MR, Brinster RL (2001) Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA. 98 13090–13095.

    Article  PubMed  CAS  Google Scholar 

  2. Ryu BY, Orwig KE, Oatley JM, Avarbock MR, Brinster RL (2006) Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells. 24 1505–1511.

    Article  PubMed  CAS  Google Scholar 

  3. Brinster RL (2007) Male germline stem cells: from mice to men. Science. 316 404–405.

    Article  PubMed  CAS  Google Scholar 

  4. Kanatsu-Shinohara M, Ogonuki N, Iwano T, Lee J, Kazuki Y, Inoue K, Miki H, Takehashi M, Toyokuni S, Shinkai Y, Oshimura M, Ishino F, Ogura A, Shinohara T (2005) Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development. 132 4155–4163.

    Article  PubMed  CAS  Google Scholar 

  5. He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann MC, Dym M (2008) Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells. 26 266–278.

    Article  PubMed  CAS  Google Scholar 

  6. Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M, Aicher W, Buhring H J, Mattheus U, Mack A, Wagner HJ, Minger S, Matzkies M, Reppel M, Hescheler J, Sievert KD, Stenzl A, Skutella T (2008) Generation of pluripotent stem cells from adult human testis. Nature. 456 344–349.

    Article  PubMed  CAS  Google Scholar 

  7. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature. 440 1199–1203.

    Article  PubMed  CAS  Google Scholar 

  8. Seandel M, James D, Shmelkov SV, Falciatori I, Kim J, Chavala S, Scherr DS, Zhang F, Torres R, Gale NW, Yancopoulos GD, Murphy A, Valenzuela DM, Hobbs RM, Pandolfi PP, Rafii S (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature. 449 346–350.

    Article  PubMed  CAS  Google Scholar 

  9. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004) Generation of pluripotent stem cells from ­neonatal mouse testis. Cell. 119 1001–1012.

    Article  PubMed  CAS  Google Scholar 

  10. Kanatsu-Shinohara M, Lee J, Inoue K, Ogonuki N, Miki H, Toyokuni S, Ikawa M, Nakamura T, Ogura A, Shinohara T (2008) Pluripotency of a single spermatogonial stem cell in mice. Biol Reprod. 78 681–687.

    Article  PubMed  CAS  Google Scholar 

  11. Ko K, Tapia N, Wu G, Kim JB, Bravo MJ, Sasse P, Glaser T, Ruau D, Han DW, Greber B, Hausdorfer K, Sebastiano V, Stehling M, Fleischmann BK, Brustle O, Zenke M, Scholer HR (2009) Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell. 5 87–96.

    Article  PubMed  CAS  Google Scholar 

  12. Golestaneh N, Kokkinaki M, Pant D, Jiang J, Destefano D, Fernandez-Bueno C, Rone JD, Haddad BR, Gallicano GI, Dym M (2009) Pluripotent stem cells derived from adult human testes. Stem Cells Dev. 18 1115–1126.

    Article  PubMed  Google Scholar 

  13. Kossack N, Meneses J, Shefi S, Nguyen HN, Chavez S, Nicholas C, Gromoll J, Turek PJ, Reijo-Pera RA (2009) Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells. 27 138–149.

    Article  PubMed  CAS  Google Scholar 

  14. Mizrak SC, Chikhovskaya JV, Sadri-Ardekani H, Van Daalen S, Korver CM, Hovingh SE, Roepers-Gajadien HL, Raya A, Fluiter K, De Reijke TM, De La Rosette JJ, Knegt AC, Belmonte JC, Van Der Veen F, De Rooij DG, Repping S, Van Pelt AM (2010) Embryonic stem cell-like cells derived from adult human testis. Hum Reprod. 25 158–167.

    Article  PubMed  CAS  Google Scholar 

  15. Payne CJ, Braun RE (2008) Human adult testis-derived pluripotent stem cells: revealing plasticity from the germline. Cell Stem Cell. 3 471–472.

    Article  PubMed  CAS  Google Scholar 

  16. Geijsen N, Hochedlinger K (2009) gPS navigates germ cells to pluripotency. Cell Stem Cell. 5 3–4.

    Article  PubMed  CAS  Google Scholar 

  17. Naughton CK, Jain S, Strickland AM, Gupta A, Milbrandt J (2006) Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biology of Reproduction. 74 314–321.

    Article  PubMed  CAS  Google Scholar 

  18. Hofmann MC, Braydich-Stolle L, Dym M (2005) Isolation of male germ-line stem cells; influence of GDNF. Dev Biol. 279 114–124.

    Article  PubMed  CAS  Google Scholar 

  19. Meng X, Lindahl M, Hyvonen ME, Parvinen M, De Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 287 1489–1493.

    Article  PubMed  CAS  Google Scholar 

  20. He Z, Jiang J, Hofmann MC, Dym M (2007) Gfra1 silencing in mouse spermatogonial stem cells results in their differentiation via the inactivation of RET tyrosine kinase. Biol Reprod. 77 723–733.

    Article  PubMed  CAS  Google Scholar 

  21. Kubota H, Avarbock MR, Brinster RL (2003) Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA. 100 6487–6492.

    Article  PubMed  CAS  Google Scholar 

  22. Shinohara T, Avarbock MR, Brinster RL (1999) beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA. 96 5504–5509.

    Article  PubMed  CAS  Google Scholar 

  23. Luo J, Megee S, Rathi R, Dobrinski I (2006) Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev. 73 1531–1540.

    Article  PubMed  CAS  Google Scholar 

  24. He Z, Kokkinaki M, Jiang J, Dobrinski I, Dym M (2010) Isolation, characterization, and culture of human spermatogonia. Biol Reprod. 82 363–372.

    Article  PubMed  CAS  Google Scholar 

  25. Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA. 101 16489–16494.

    Article  PubMed  CAS  Google Scholar 

  26. Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, Shinohara T (2005) Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod. 72 985–991.

    Article  PubMed  CAS  Google Scholar 

  27. Clermont Y (1963) The cycle of the seminiferous epithelium in man. Am J Anat. 112 35–51.

    Article  PubMed  CAS  Google Scholar 

  28. Clermont Y (1966) Renewal of spermatogonia in man. Am J Anat. 118 509–524.

    Article  PubMed  CAS  Google Scholar 

  29. Clermont Y (1966) Spermatogenesis in man. A study of the spermatogonial population. Fertil Steril. 17 705–721.

    CAS  Google Scholar 

  30. Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 52 198–236.

    PubMed  CAS  Google Scholar 

  31. Dym M, Kokkinaki M, He Z (2009) Spermatogonial stem cells: mouse and human comparisons. Birth Defects Res C Embryo Today. 87 27–34.

    Article  PubMed  CAS  Google Scholar 

  32. Kokkinaki M, Lee TL, He Z, Jiang J, Golestaneh N, Hofmann MC, Chan WY, Dym M (2009) The molecular signature of spermatogonial stem/progenitor cells in the 6-day-old mouse testis. Biol Reprod. 80 707–717.

    Article  PubMed  CAS  Google Scholar 

  33. Kokkinaki M, Lee TL, He Z, Jiang J, Golestaneh N, Hofmann MC, Chan WY, Dym M (2010) Age affects gene expression in mouse spermatogonial stem/progenitor cells. Reproduction. 139 1011–1120.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuping He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

He, Z., Kokkinaki, M., Jiang, J., Zeng, W., Dobrinski, I., Dym, M. (2012). Isolation of Human Male Germ-Line Stem Cells Using Enzymatic Digestion and Magnetic-Activated Cell Sorting. In: Chan, WY., Blomberg, L. (eds) Germline Development. Methods in Molecular Biology, vol 825. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-436-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-436-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-435-3

  • Online ISBN: 978-1-61779-436-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics