Skip to main content

High Throughput Profiling of Serum Phosphoproteins/Peptides Using the SELDI-TOF-MS Platform

  • Protocol
  • First Online:
Book cover SELDI-TOF Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 818))

Abstract

Protein phosphorylation is a dynamic post-translational modification that plays a critical role in the regulation of a wide spectrum of biological events and cellular functions including signal transduction, gene expression, cell proliferation, and apoptosis. Determination of the sites and magnitudes of protein phosphorylation has been an essential step in the analysis of the control of many biological systems. A high throughput analysis of phosphorylation of proteins would provide a simple, logical, and useful tool for a functional dissection and prediction of biological functions and signaling pathways in association with these important molecular events. We have developed a functional proteomics technique using the ProteinChip array-based SELDI-TOF-MS analysis for high throughput profiling of phosphoproteins/phosphopeptides in human serum for the early detection and diagnosis as well as for the molecular staging of human cancer. The methodology and experimental approach consists of five steps: (1) generation of a total peptide pool of serum proteins by a global trypsin digestion; (2) rapid isolation of phosphopeptides from the total serum peptide pool by an affinity selection, purification, and enrichment using a novel automated micro-bioprocessing system with phospho-antibody-conjugated paramagnetic beads and a hybrid magnet plate; (3) high throughput phosphopeptide analysis on ProteinChip arrays by automated SELDI-TOF-MS; and (4) bioinformatics and statistical methods for data analysis. This method with appropriate modifications may be equally applicable to serine-, threonine- and tyrosine-phosphorylated proteins and for selectively isolating, profiling, and identifying phosphopeptides present in a highly complex phosphor-peptide mixture prepared from various human specimens such as cells, tissue samples, and serum and other body fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter, T. (2000) Signaling–2000 and beyond. Cell. 100, 113–127.

    Article  PubMed  CAS  Google Scholar 

  2. Oda,Y., Huang, K., Cross, F.R., Cowburn, D., and Chait, B.T. (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA. 96, 6591–6596.

    Article  PubMed  CAS  Google Scholar 

  3. Oda,Y., Nagasu,T., and Chait, B.T. (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382.

    Article  PubMed  CAS  Google Scholar 

  4. Peters, E.C., Brock,A., and Ficarro, S.B. (2004) Exploring the phosphoproteome with mass spectrometry. Mini-Rev. Med. Chem. 4, 313–324.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson, S.A. and Hunter, T. (2005) Kinomics: methods for deciphering the kinome. Nat. Methods. 2, 17–25.

    Article  PubMed  CAS  Google Scholar 

  6. York, J.D. and Hunter, T. (2004) Signal transduction. Unexpected mediators of protein phosphorylation. Science. 306, 2053–2055.

    Article  PubMed  CAS  Google Scholar 

  7. Johnson, S.A. and Hunter, T. (2004) Phosphoproteomics finds its timing. Nat. Biotechnol. 22, 1093–1094.

    Article  PubMed  CAS  Google Scholar 

  8. Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science. 298, 1912–1934.

    Article  PubMed  CAS  Google Scholar 

  9. Rush, J., Moritz, A., Lee, K.A., Guo, A., Goss,V.L., Spek, E.J. et al. (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94–101.

    Article  PubMed  CAS  Google Scholar 

  10. Hunter, T. (2002) Tyrosine phosphorylation in cell signaling and disease. Keio J. Med. 51, 61–71.

    Article  PubMed  CAS  Google Scholar 

  11. Hunter, T. (1998) The role of tyrosine phosphorylation in cell growth and disease. Harvey Lectures. 94, 81–119.

    PubMed  Google Scholar 

  12. Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I., Osterman, A. et al. (2004) Protein tyrosine phosphatases in the human genome. Cell. 117, 699–711.

    Article  PubMed  CAS  Google Scholar 

  13. Hornbeck, P.V., Chabra, I., Kornhauser, J.M., Skrzypek, E., and Zhang, B. (2004) PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics. 4, 1551–1561.

    Article  PubMed  CAS  Google Scholar 

  14. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W., and Gygi, S.P. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA. 100, 6940–6945.

    Article  PubMed  CAS  Google Scholar 

  15. Steen, H., Jebanathirajah, J.A., Rush, J., Morrice, N., and Kirschner, M.W. (2006) Phosphorylation analysis by mass spectrometry: myths, facts, and the consequences for qualitative and quantitative measurements. Mol. Cell. Proteomics. 5, 172–181.

    PubMed  CAS  Google Scholar 

  16. Pan, S., Zhang, H., Rush, J., Eng, J., Zhang, N., Patterson, D. et al. (2005) High throughput proteome screening for biomarker detection. Mol. Cell. Proteomics. 4, 182–190.

    PubMed  CAS  Google Scholar 

  17. Brill, L.M., Salomon, A.R., Ficarro, S.B., Mukherji, M., Stettler-Gill, M., and Peters, E.C. (2004) Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Anal. Chem. 76, 2763–2772.

    Article  PubMed  CAS  Google Scholar 

  18. Mann, M., Ong, S.E., Gronborg, M., Steen, H., Jensen, O.N., and Pandey, A. (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 20, 261–268.

    Article  PubMed  CAS  Google Scholar 

  19. Salomon, A.R., Ficarro, S.B., Brill, L.M., Brinker, A., Phung, Q.T., Ericson, C. et al. (2003) Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc. Natl. Acad. Sci. USA. 100, 443–448.

    Article  PubMed  CAS  Google Scholar 

  20. Zhou, H., Watts, J.D., and Aebersold, R. (2001) A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, H., Zha, X., Tan, Y., Hornbeck, P.V., Mastrangelo, A.J., Alessi, D.R. et al. (2002) Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. J. Biol. Chem. 277, 39379–39387.

    Article  PubMed  CAS  Google Scholar 

  22. Rush, J., Moritz, A., Lee,K. A., Guo, A., Goss, V.L., Spek, E.J. et al. (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94–101.

    Article  PubMed  CAS  Google Scholar 

  23. Mann, M. (1999) Quantitative proteomics? Nat. Biotechnol. 17, 954–955.

    Article  PubMed  CAS  Google Scholar 

  24. Rice, R.H., Means, G.E., and Brown, W.D. (1977) Stabilization of Bovine Trypsin by Reductive Methylation. Biochim. Biophys. Acta. 492, 316–321.

    Article  PubMed  CAS  Google Scholar 

  25. Elkin, H., Kapur, T., Humphries, D., Pollard, M., Nammon, N., and Hawkins, T. (2002) Magnetic bead purification of labeled DNA fragments for high throughput capillary electorphoresis sequencing. Biotechniques. 32, 1296–1307.

    PubMed  CAS  Google Scholar 

  26. Humphries, D.E., Pollard, M.J., and Elkin, C.J. High Performance Hybrid Magnetic Structure for Biotechnology Applications. The Regents of the University of California. 10/305658 (6954128B2). 2002 California, USA (Patent).

    Google Scholar 

  27. Aebersold, R., Rist, B., and Gygi, S.P. (2000) Quantitative proteome analysis: methods and applications. Annal. New York Acad. Sci. 919, 33–47.

    Article  CAS  Google Scholar 

  28. Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature. 422, 198–207.

    Article  PubMed  CAS  Google Scholar 

  29. Anderson, N.L., Matheson, A.D., and Steiner, S. (2000) Proteomics: applications in basic and applied biology. Curr. Opin. Biotechnol. 11, 408–412.

    Article  PubMed  CAS  Google Scholar 

  30. Anderson, N.L. and Anderson, N.G. (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics. 1, 845–867.

    Article  PubMed  CAS  Google Scholar 

  31. Celis, J.E.G. (2003) Proteomics in translational cancer research: Toward an integrated approach. Cancer Cell. 3, 9–15.

    Article  PubMed  CAS  Google Scholar 

  32. Coombes, K.R., Morris, J.S., Hu, J., Edmonson, S.R., and Baggerly, K.A. (2005) Serum proteomics profiling–a young technology begins to mature. Nat. Biotechnol. 23, 291–292.

    Article  PubMed  CAS  Google Scholar 

  33. Petricoin, E.F., Zoon, K.C., Kohn, E.C., Barrett, J.C., and Liotta, L.A. (2002) Clinical proteomics: translating benchside promise into bedside reality. Nat. Rev. Drug Discov. 1, 683–695.

    Article  PubMed  CAS  Google Scholar 

  34. Petricoin, E.F. and Liotta, L.A. (2004) SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr. Opin. Biotechnol. 15, 24–30.

    Article  PubMed  CAS  Google Scholar 

  35. Sauer, S., Lange, B.M., Gobom, J., Nyarsik, L., Seitz, H., and Lehrach, H. (2005) Miniaturization in functional genomics and proteomics. Nat. Rev. Genet. 6, 465–476.

    Article  PubMed  CAS  Google Scholar 

  36. Shrivastava, A., von Wronski, M.A., Sato, A.K., et al. (2005) A distinct strategy to generate high-affinity peptide binders to receptor tyrosine kinases. Prot. Engin., Design. Select. 18, 417–424.

    Article  CAS  Google Scholar 

  37. Sato, A.K., Sexton, D.J., Morganelli, L.A., et al. (2002) Development of mammalian serum albumin affinity purification media by peptide phage display. Biotechnol. Prog. 18, 182–192.

    Article  PubMed  CAS  Google Scholar 

  38. Adkins, J.N., Varnum, S.M., Auberry, K.J., et al. (2002) Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics. 1, 947–955.

    Article  PubMed  CAS  Google Scholar 

  39. Chan, K.C., Lucas, D.A., Hise, D., GM et al. (2004) Analysis of the human serum proteome. Clin. Proteomics J. 1, 101–225.

    Google Scholar 

  40. Ressom, H.W., Varghese, R.S., Abdel-Hamid, M., et al. (2005) Analysis of mass spectral serum profiles for biomarker selection. Bioinformatics. 21, 4039–4045.

    Article  PubMed  CAS  Google Scholar 

  41. Veenstra, T.D., Prieto, D.A., and Conrads, T.P. (2004) Proteomic patterns for early cancer detection. Drug Discov. Today. 9, 889–897.

    Article  PubMed  CAS  Google Scholar 

  42. Yu, L.R., Zhou, M., Conrads, T.P., and Veenstra, T.D. (2003) Diagnostic proteomics: serum proteomic patterns for the detection of early stage cancers. Dis. Markers. 19, 209–218.

    PubMed  Google Scholar 

  43. Issaq, H.J., Conrads, T.P., Prieto, D.A., Tirumalai, R., and Veenstra, T.D. (2003) SELDI-TOF MS for diagnostic proteomics. Anal. Chem. 75, 148A–155A.

    Article  CAS  Google Scholar 

  44. Issaq, H.J., Veenstra, T.D., Conrads, T.P., and Felschow, D. (2002) The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem. Biophys. Res. Commun. 292, 587–592.

    Article  PubMed  CAS  Google Scholar 

  45. Rosenblatt, K.P., Bryant-Greenwood, P., Killian, J.K., et al. (2004) Serum proteomics in cancer diagnosis and management. Ann. Rev. Med. 55, 97–112.

    Article  PubMed  CAS  Google Scholar 

  46. Diamandis, E.P. (2004) Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J. Natl. Cancer Inst. 96, 353–356.

    Article  PubMed  Google Scholar 

  47. Koomen, J.M., Li, D., Xiao, L.C., et al. (2005) Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery. J. Prot. Res. 4, 972–981.

    Article  CAS  Google Scholar 

  48. Semmes, O.J., Feng, Z., Adam, B.L., et al. (2005) Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I. Assessment of platform reproducibility. Clin. Chem. 51, 102–112.

    Article  PubMed  CAS  Google Scholar 

  49. Baggerly, K.A., Morris, J.S., Wang, J., Gold, D., Xiao, L.C., and Coombes, K.R. (2003) A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization-time of flight proteomics spectra from serum samples. Proteomics. 3, 1667–1672.

    Article  PubMed  CAS  Google Scholar 

  50. Baggerly, K.A., Morris, J.S., and Coombes, K.R. (2004) Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics. 20, 777–785.

    Article  PubMed  CAS  Google Scholar 

  51. Baggerly, K.A., Morris, J.S., Edmonson, S.R., and Coombes, K.R. (2005) Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J. Natl. Cancer Inst. 97, 307–309.

    Article  PubMed  CAS  Google Scholar 

  52. Coombes, K.R., Tsavachidis, S., Morris, J.S., Baggerly, K.A., Hung, M.C., and Kuerer, H.M. (2005) Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics. 5, 4107–4117.

    Article  PubMed  CAS  Google Scholar 

  53. Coombes, K.R. (2005) Analysis of mass spectrometry profiles of the serum proteome. Clin. Chem. 51, 1–2.

    Article  PubMed  CAS  Google Scholar 

  54. Coombes, K.R., Fritsche, H.A., Jr., Clarke, C., et al. (2003) Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization. Clin. Chem. 49, 1615–1623.

    Article  PubMed  CAS  Google Scholar 

  55. Baggerly, K.A., Edmonson, S.R., Morris, J.S., and Coombes, K.R. (2004) High-resolution serum proteomic patterns for ovarian cancer detection. Endocr. Relat. Cancer. 11, 583–584.

    Article  PubMed  CAS  Google Scholar 

  56. Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., and Golani, I. (2001) Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 125, 279–284.

    Article  PubMed  CAS  Google Scholar 

  57. Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., and Kobayashi, R. (2005) Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics. 21, 1764–1775.

    Article  PubMed  CAS  Google Scholar 

  58. Pounds, S. and Cheng, C. (2004) Improving false discovery rate estimation. Bioinformatics. 20, 1737–1745.

    Article  PubMed  CAS  Google Scholar 

  59. Pounds, S. and Cheng, C. (2005) Sample size determination for the false discovery rate. Bioinformatics. 21, 4263–4271.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Xifeng Wu and Margaret Spitz for providing lung cancer serum samples for serum phosphopeptide profiling and analysis and Dr. Kevin Coombes for bioinformatics and statistical analysis, at The University of Texas M. D. Anderson Cancer Center, Houston, TX, and David Humphries at Lawrence Berkeley National Laboratory, Oak Land, CA for developing hybrid magnetic plates for serum phosphopeptide enrichment. This work was partially supported by grants from NIH/NCI SPORE P50CA070907, RO1CA116322, and MMHCC U01CA105352; DOD PROSPECT W81XWH-0710306; The University of Texas M. D. Anderson Cancer Center Support Core Grant (CA16672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ji, L., Jayachandran, G., Roth, J.A. (2012). High Throughput Profiling of Serum Phosphoproteins/Peptides Using the SELDI-TOF-MS Platform. In: Clarke, C., McCarthy, D. (eds) SELDI-TOF Mass Spectrometry. Methods in Molecular Biology, vol 818. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-418-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-418-6_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-417-9

  • Online ISBN: 978-1-61779-418-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics