Skip to main content

Zinc-Finger Nucleases-Based Genome Engineering to Generate Isogenic Human Cell Lines

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 813))

Abstract

Customized zinc-finger nucleases (ZFNs) have developed into a promising technology to precisely alter mammalian genomes for biomedical research, biotechnology, or human gene therapy. In the context of synthetic biology, the targeted integration of a transgene or reporter cassette into a “neutral site” of the human genome, such as the AAVS1 locus, permits the generation of isogenic human cell lines with two major advantages over standard genetic manipulation techniques: minimal integration site-dependent effects on the transgene and, vice versa, no functional perturbation of the host-cell transcriptome. Here we describe in detail how ZFNs can be employed to target integration of a transgene cassette into the AAVS1 locus and how to characterize the targeted cells by PCR-based genotyping.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Capecchi, M. R. (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century, Nat Rev Genet 6, 507–512.

    Article  PubMed  CAS  Google Scholar 

  2. Vasquez, K. M., Marburger, K., Intody, Z., and Wilson, J. H. (2001) Manipulating the mammalian genome by homologous recombination, Proc Natl Acad Sci USA 98, 8403–8410.

    Article  PubMed  CAS  Google Scholar 

  3. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., and Gregory, P. D. (2010) Genome editing with engineered zinc finger nucleases, Nat Rev Genet 11, 636–646.

    Article  PubMed  CAS  Google Scholar 

  4. Jasin, M. (1996) Genetic manipulation of genomes with rare-cutting endonucleases, Trends Genet 12, 224–228.

    Article  PubMed  CAS  Google Scholar 

  5. Cathomen, T., and Joung, K. J. (2008) Zinc-finger nucleases: the next generation emerges, Mol Ther 16, 1200–1207.

    Article  PubMed  CAS  Google Scholar 

  6. Carroll, D. (2008) Progress and prospects: zinc-finger nucleases as gene therapy agents, Gene Ther 15, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  7. Kim, Y. G., Cha, J., and Chandrasegaran, S. (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain, Proc Natl Acad Sci U S A 93, 1156–1160.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, J., Bibikova, M., Whitby, F. G., Reddy, A. R., Chandrasegaran, S., and Carroll, D. (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains, Nucleic Acids Res 28, 3361–3369.

    Article  PubMed  CAS  Google Scholar 

  9. Lombardo, A., Genovese, P., Beausejour, C. M., Colleoni, S., Lee, Y. L., Kim, K. A., Ando, D., Urnov, F. D., Galli, C., Gregory, P. D., Holmes, M. C., and Naldini, L. (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery, Nat Biotechnol 25, 1298–1306.

    Article  PubMed  CAS  Google Scholar 

  10. Kotin, R. M., Linden, R. M., and Berns, K. I. (1992) Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination, Embo J 11, 5071–5078.

    PubMed  CAS  Google Scholar 

  11. Ogata, T., Kozuka, T., and Kanda, T. (2003) Identification of an insulator in AAVS1, a preferred region for integration of adeno-associated virus DNA, J Virol 77, 9000–9007.

    Article  PubMed  CAS  Google Scholar 

  12. Smith, J. R., Maguire, S., Davis, L. A., Alexander, M., Yang, F., Chandran, S., ffrench-Constant, C., and Pedersen, R. A. (2008) Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration, Stem Cells 26, 496–504.

    Article  PubMed  CAS  Google Scholar 

  13. Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver, R. C., Katibah, G. E., Amora, R., Boydston, E. A., Zeitler, B., Meng, X., Miller, J. C., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., and Jaenisch, R. (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases, Nat Biotechnol 27, 851–857.

    Article  PubMed  CAS  Google Scholar 

  14. DeKelver, R. C., Choi, V. M., Moehle, E. A., Paschon, D. E., Hockemeyer, D., Meijsing, S. H., Sancak, Y., Cui, X., Steine, E. J., Miller, J. C., Tam, P., Bartsevich, V. V., Meng, X., Rupniewski, I., Gopalan, S. M., Sun, H. C., Pitz, K. J., Rock, J. M., Zhang, L., Davis, G. D., Rebar, E. J., Cheeseman, I. M., Yamamoto, K. R., Sabatini, D. M., Jaenisch, R., Gregory, P. D., and Urnov, F. D. (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome, Genome Res 20, 1133–1142.

    Article  PubMed  CAS  Google Scholar 

  15. Szczepek, M., Brondani, V., Buchel, J., Serrano, L., Segal, D. J., and Cathomen, T. (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases, Nat Biotechnol 25, 786–793.

    Article  PubMed  CAS  Google Scholar 

  16. Söllü, C., Pars, K., Cornu, T. I., Thibodeau-Beganny, S., Maeder, M. L., Joung, K. J., Heilbronn, R., and Cathomen, T. (2010) Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion, Nucleic Acids Res 38, 8269–8276.

    Google Scholar 

  17. Zou, J., Maeder, M. L., Mali, P., Pruett-Miller, S. M., Thibodeau-Beganny, S., Chou, B. K., Chen, G., Ye, Z., Park, I. H., Daley, G. Q., Porteus, M. H., Joung, J. K., and Cheng, L. (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells, Cell Stem Cell 5, 97–110.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Cathomen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dreyer, AK., Cathomen, T. (2012). Zinc-Finger Nucleases-Based Genome Engineering to Generate Isogenic Human Cell Lines. In: Weber, W., Fussenegger, M. (eds) Synthetic Gene Networks. Methods in Molecular Biology, vol 813. Humana Press. https://doi.org/10.1007/978-1-61779-412-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-412-4_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-411-7

  • Online ISBN: 978-1-61779-412-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics