Skip to main content

Surface Plasmon Resonance Imaging Analysis of Protein Binding to a Sialoside-Based Carbohydrate Microarray

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 808))

Abstract

Monitoring multiple biological interactions in a multiplexed array format has numerous advantages. However, converting well-developed surface chemistry for spectroscopic measurements to array-based, high-throughput screening is not a trivial process and often proves to be the bottleneck in method development. This chapter reports the fabrication and characterization of a new carbohydrate microarray with synthetic sialosides for surface plasmon resonance imaging analysis of lectin–carbohydrate interactions. Contact printing of functional sialosides on neutravidin-coated surfaces was carried out and the properties of the resulting elements were characterized by fluorescence microscopy. Sambucus nigra agglutinin (SNA) was used for testing on four different carbohydrate-functionalized surfaces and differential binding was analyzed. Multiplexed detection of SNA/biotinylated sialoside interactions on arrays up to 400 elements has been performed with good data correlation, demonstrating the effectiveness of the biotin–neutravidin-based biointerface to control probe orientation for reproducible and efficient protein binding to carbohydrates.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hakomori, S. (2004) Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization. Glycoconj. J. 21 125–37.

    Article  PubMed  CAS  Google Scholar 

  2. Fukui, S., Feizi, T., Galustian, C., Lawson, A. M., and Chai, W. (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20 1011–17.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, D., Liu, S., Trummer, B. J., Deng, C., and Wang, A. (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20 275–81.

    Article  PubMed  CAS  Google Scholar 

  4. Park, S. J., and Shin, I. J. (2002) Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew. Chem.-Int. Edit. 41 3180–82.

    Article  CAS  Google Scholar 

  5. Houseman, B. T., and Mrksich, M. (2002) Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9 443–54.

    Article  PubMed  CAS  Google Scholar 

  6. Weibel, C. (2002) “The spotting accelerator™”, customizable head assembly for advanced microarraying. JALA 7 89–94.

    Article  CAS  Google Scholar 

  7. Barbulovic-Nad, I., Lucente, M., Sun, Y., Zhang, M. J., Wheeler, A. R., and Bussmann, M. (2006) Bio-microarray fabrication techniques – A review. Crit. Rev. Biotechnol. 26 237–59.

    Article  PubMed  CAS  Google Scholar 

  8. Mace, M. L., Montagu, J., Rose, S. D., and McGuinness, G. (2000) in “Microarray Biochip Technology”, pp. 39–64, Eaton Publishing, Natick, MA.

    Google Scholar 

  9. Liang, P. H., Wu, C. Y., Greenberg, W. A., and Wong, C. H. (2008) Glycan arrays: biological and medical applications. Curr. Opin. Chem. Biol. 12 86–92.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, Y. L., Nguyen, A., Niu, L. F., and Corn, R. M. (2009) Fabrication of DNA Microarrays with Poly(L-glutamic acid) Monolayers on Gold Substrates for SPR Imaging Measurements. Langmuir 25 5054–60.

    Article  PubMed  CAS  Google Scholar 

  11. Dhayal, M., and Ratner, D. A. (2009) XPS and SPR analysis of glycoarray surface density. Langmuir 25 2181–87.

    Article  PubMed  CAS  Google Scholar 

  12. Linman, M. J., Taylor, J. D., Yu, H., Chen, X., and Cheng, Q. (2008) Surface plasmon resonance study of protein–carbohydrate interactions using biotinylated sialosides. Anal. Chem. 80 4007–13.

    Article  PubMed  CAS  Google Scholar 

  13. Wilkop, T., Wang, Z. Z., and Cheng, Q. (2004) Analysis of u-contact printed protein patterns by SPR imaging with a LED light source. Langmuir 20 11141–48.

    Article  PubMed  CAS  Google Scholar 

  14. Linman, M. J., Yu, H., Chen, X., and Cheng, Q. (2009) Fabrication and characterization of a sialoside-based carbohydrate microarray biointerface for protein binding analysis with surface plasmon resonance imaging. ACS Appl. Mater. Interfaces 1 1755–62.

    Article  PubMed  CAS  Google Scholar 

  15. Yu, H., Yu, H., Karpel, R., and Chen, X. (2004) Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorg Med Chem 12 6427–35.

    Article  PubMed  CAS  Google Scholar 

  16. Yu, H., Huang, S., Chokhawala, H., Sun, M., Zheng, H., and Chen, X. (2006) Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: a P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angew Chem Int Ed Engl 45 3938–44.

    Article  PubMed  CAS  Google Scholar 

  17. Yu, H., Chokhawala, H. A., Huang, S., and Chen, X. (2006) One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nat Protoc 1 2485–92.

    Article  PubMed  CAS  Google Scholar 

  18. Yu, H., Chokhawala, H., Karpel, R., Wu, B., Zhang, J., Zhang, Y., Jia, Q., and Chen, X. (2005) A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J Am Chem Soc 127 17618–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial supports from NSF grant CHE-0719224 (to QC) and NIH grant R01GM076360 (to XC). MJL would like to acknowledge the support from the American Chemical Society, Division of Analytical Chemistry Fellowship, sponsored by Procter & Gamble.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Linman, M.J., Yu, H., Chen, X., Cheng, Q. (2012). Surface Plasmon Resonance Imaging Analysis of Protein Binding to a Sialoside-Based Carbohydrate Microarray. In: Chevolot, Y. (eds) Carbohydrate Microarrays. Methods in Molecular Biology, vol 808. Humana Press. https://doi.org/10.1007/978-1-61779-373-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-373-8_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-372-1

  • Online ISBN: 978-1-61779-373-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics