Skip to main content

From Metabolic Reactions to Networks and Pathways

  • Protocol
  • First Online:
Bacterial Molecular Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 804))

Abstract

Enzymatic reactions form a hypergraph structure and their translation into a graph structure accompanies an information loss. This chapter introduces well-known topological transformations from metabolic reactions to a graph, and discusses their advantages and disadvantages. Also discussed is the legitimacy of defining cofactors or currency metabolites, and suitable application area of each representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási A-L, Albert R. (1999) Emergence of scaling in random networks. Science, 286(5439):509–512.

    Google Scholar 

  2. Liu B. (2007) Web Data Mining – Exploring Hyperlinks, Contents and Usage Data. Springer Series on Data-Centric Systems and Applications.

    Google Scholar 

  3. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-I. (2000) The large-scale organization of metabolic networks. Nature, 407(6804):651–654.

    CAS  Google Scholar 

  4. Fell DA, Wagner A. (2000) The small world of metabolism. Nat Biotechnol, 18(11): 1121–1122.

    CAS  Google Scholar 

  5. Huss M, Holme P. (2006) Currency and commodity metabolites: their identification and relation to the modularity of metabolic networks. IET Syst Biol, 1(5):280–285.

    Google Scholar 

  6. Parter M, Kashtan N, Alon U. (2007) Environmental variability and modularity of bacterial metabolic networks. BMC Evol Biol, 7:169.

    Google Scholar 

  7. Wagner A, Fell D. (2001) The small world inside large metabolic networks. Proc R Soc Lond B, 268(1478):1803–1810.

    CAS  Google Scholar 

  8. Kreimer A, Borenstein E, Gophna U, Ruppin E. (2008) The evolution of modularity in bacterial metabolic networks. Proc Natl Acad Sci U S A, 105(19):6976–6981.

    CAS  Google Scholar 

  9. Ma H, Zeng A-P. (2003) Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics, 19(2):270–277.

    CAS  Google Scholar 

  10. Rahman SA, Advani P, Schunk R, Schrader R, Schomburg D. (2005) Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC). Bioinformatics, 21(7):1189–1193.

    Article  PubMed  CAS  Google Scholar 

  11. Kotera M, Hattori M, Oh M-A, Yamamoto R, Komeno T, Yabuzaki J, Tonomura K, Goto S, Kanehisa M. (2004) RPAIR: a reactant-pair database representing chemical changes in enzymatic reactions. Genome Informatics, 15:P062 (poster abstract)

    Google Scholar 

  12. Arita M. (2003) In silico atomic tracing by substrate–product relationships in Escherichia coli intermediary metabolism. Genome Res, 13:2455–2466.

    CAS  Google Scholar 

  13. Arita M. (2004) The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci U S A, 101(6):1543–1547.

    Article  PubMed  CAS  Google Scholar 

  14. Caetano-Anollés G, Kim HS, Mittenthal JE. (2007) The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc Natl Acad Sci U S A, 104(22):9358–9363.

    Google Scholar 

  15. Blum T, Kohlbacher O. (2008) Using atom mapping rules for an improved detection of relevant routes in weighted metabolic networks. J Comput Biol, 15(6):565–576.

    CAS  Google Scholar 

  16. Pitkanen E, Jouhten P, Rousu J. (2009) Inferring branching pathways in genome-scale metabolic networks. BMC Syst Biol, 3(1):103.

    Google Scholar 

  17. Faust K, Croes D, van Helden J. (2009) Metabolic pathfinding using RPAIR annotation. J Mol Biol, 388(2):390–414.

    CAS  Google Scholar 

  18. IUBMB Enzyme Nomenclature. [http://www.chem.qmul.ac.uk/iubmb/enzyme/]

  19. Chang A, Scheer M, Grote A, Schomburg I, Schomburg D. (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res, 37(Database issue):D588–D592.

    Google Scholar 

  20. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res, 36(Database issue):D480–D484.

    Google Scholar 

  21. Kümmel A, Panke S, Heinemann M. (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics, 7:512.

    Google Scholar 

  22. Maskow T, von Stockar U. (2005) How reliable are thermodynamic feasibility statements of biochemical pathways? Biotechnol Bioeng, 92(2):223–230.

    Article  CAS  Google Scholar 

  23. Symbolism and Terminology in Enzyme Kinetics (IUBMB Recommendation 1981). Enzyme Reactions & Inhibition. [http://www.chem.qmul.ac.uk/iubmb/kinetics/ek4t6.html].

  24. Price ND, Reed JL, Palsson BØ. (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol, 2(11):886–897.

    CAS  Google Scholar 

  25. Schuster S, Fell DA, Dandekar T. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol, 18(3):326–332.

    CAS  Google Scholar 

  26. Schilling CH, Schuster S, Palsson BØ, Heinrich R. (1999) Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Prog, 15(3):296–303.

    CAS  Google Scholar 

  27. Kaleta C, de Figueiredo LF, Schuster S. (2009) Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome Res, 19(10):1872–1883.

    CAS  Google Scholar 

  28. Klamt S, Stelling J. (2003) Two approaches for metabolic pathway analysis? Trends Biotechnol, 21(2):64–69.

    Article  PubMed  CAS  Google Scholar 

  29. Reed JL, Vo TD, Schilling CH, Palsson BØ. (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol, 4:R54.

    Article  PubMed  Google Scholar 

  30. Satish Kumar V, Dasika MS, Maranas CD. (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics, 8:212.

    Google Scholar 

  31. Guimerà R, Nunes Amaral LA. (2005) Functional cartography of complex metabolic networks. Nature, 433(7028):895–900.

    Article  PubMed  Google Scholar 

  32. Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, Kaipa P, Karthikeyan AS, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Paley S, Popescu L, Pujar A, Shearer AG, Zhang P, Karp PD. (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res, 38(Database issue):D473–D479.

    Google Scholar 

  33. Arita M. (2009) What can metabolomics learn from genomics and proteomics? Curr Opin Biotechnol, 20(6):610–615.

    Article  PubMed  CAS  Google Scholar 

  34. Hintze A, Adami C. Evolution of complex modular biological networks. PLoS Comput Biol, 4(2):e23.

    Google Scholar 

Download references

Acknowledgments

The author thanks the editors and reviewers for valuable comments. This work is supported by JST-BIRD and Grant-in-Aid for Scientific Research on Priority Areas “Systems Genomics” from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Arita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Arita, M. (2012). From Metabolic Reactions to Networks and Pathways. In: van Helden, J., Toussaint, A., Thieffry, D. (eds) Bacterial Molecular Networks. Methods in Molecular Biology, vol 804. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-361-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-361-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-360-8

  • Online ISBN: 978-1-61779-361-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics