Skip to main content

From Bacterial to Microbial Ecosystems (Metagenomics)

  • Protocol
  • First Online:
Bacterial Molecular Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 804))

Abstract

Metagenomics is revolutionizing the field of microbial ecology through techniques that eliminate the prerequisite of culturing. Metagenomic studies of microbial populations in different environments reveal the incredible diversity and adaptive capabilities of these organisms. With the advent of cheaper, high-throughput sequencing technologies, these studies are also producing vast amounts of sequence data. Here, we discuss the different components of a metagenomic study including sample collection, DNA extraction, sequencing, and informatics. We highlight their issues and challenges, and review the solutions that are currently in use. We conclude with examples of metagenomic studies conducted on environments of varying complexities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Handelsman J. (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev, 68(4):669–685.

    Article  PubMed  CAS  Google Scholar 

  2. Whitman WB, Coleman DC, Wiebe WJ. (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A, 95(12):6578–6583.

    Article  PubMed  CAS  Google Scholar 

  3. Sanger F, Nicklen S, Coulson AR. (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 74(12):5463–5467.

    Article  PubMed  CAS  Google Scholar 

  4. Margulies M, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437:376–380.

    PubMed  CAS  Google Scholar 

  5. White RA, 3rd, et al. (2009) Digital PCR provides sensitive and absolute calibration for high throughput sequencing. BMC Genomics, 10:116.

    Article  PubMed  Google Scholar 

  6. Rusch DB, et al. (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol, 5(3):e77.

    Article  PubMed  Google Scholar 

  7. Yooseph S, et al. (2007) The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol, 5(3):e16.

    Article  PubMed  Google Scholar 

  8. Venter JC, et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304(5667):66–74.

    Article  PubMed  CAS  Google Scholar 

  9. DeLong EF, et al. (2006) Community genomics among stratified microbial assemblages in the ocean's interior. Science, 311(5760):496–503.

    Article  PubMed  CAS  Google Scholar 

  10. Beja O, et al. (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science, 289(5486):1902–1906.

    Article  PubMed  CAS  Google Scholar 

  11. Konstantinidis KT, et al. (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol, 75(16):5345–5355.

    Article  PubMed  CAS  Google Scholar 

  12. Gill SR, et al. (2006) Metagenomic analysis of the human distal gut microbiome. Science, 312(5778):1355–1359.

    Article  PubMed  CAS  Google Scholar 

  13. Palmer C, et al. (2007) Development of the human infant intestinal microbiota. PLoS Biol, 5(7):e177.

    Article  PubMed  Google Scholar 

  14. Turnbaugh PJ, Gordon JI. (2009) The core gut microbiome, energy balance and obesity. J Physiol, 587(Pt 17):4153–4158.

    Article  PubMed  CAS  Google Scholar 

  15. Turnbaugh PJ, et al. (2009) A core gut microbiome in obese and lean twins. Nature, 457(7228):480–484.

    Article  PubMed  CAS  Google Scholar 

  16. Hugenholtz P, Tyson GW. (2008) Microbiology: metagenomics. Nature, 455(7212):481–483.

    Article  PubMed  CAS  Google Scholar 

  17. Binga EK, Lasken RS, Neufeld JD. (2008) Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J, 2(3):233–241.

    Article  PubMed  CAS  Google Scholar 

  18. Pfannkoch C, et al. (2010) Hydroxyapatite-mediated separation of dsDNA, ssDNA and RNA genotypes from natural viral assemblages and metagenomic library construction. Appl Environ Microbiol, 76(15):5039–5045.

    Article  Google Scholar 

  19. Williamson KE, et al. Optimizing the extraction of prokaryotes from soils for high-throughput metagenomic sequencing. Appl Environ Microbiol, Submitted.

    Google Scholar 

  20. Dell'Anno A, Bompadre S, Danovaro R. (2002) Quantification, base composition, and fate of extracellular DNA in marine sediments. Limnol Oceanogr, 47(3):899–905.

    Article  Google Scholar 

  21. Williamson KE, Radosevich M, Wommack KE. (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol, 71(6):3119–3125.

    Article  PubMed  CAS  Google Scholar 

  22. Robe P, et al. (2003) Extraction of DNA from soil. Eur J Soil Biol, 39:183–190.

    Article  CAS  Google Scholar 

  23. Warnecke F, Hess M. (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol, 142(1):91–95.

    Article  PubMed  CAS  Google Scholar 

  24. Shi Y, Tyson GW, DeLong EF. (2009) Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature, 459(7244):266–269.

    Article  PubMed  CAS  Google Scholar 

  25. Poretsky RS, et al. (2009) Analyzing gene expression from marine microbial communities using environmental transcriptomics. J Vis Exp, (24).

    Google Scholar 

  26. Gilbert JA, et al. (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS ONE, 3(8):e3042.

    Article  PubMed  Google Scholar 

  27. Fortin N, et al. (2004) Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. J Microbiol Methods, 56(2):181–191.

    Article  PubMed  CAS  Google Scholar 

  28. Carrigg C, et al. (2007) DNA extraction method affects microbial community profiles from soils and sediment. Appl Microbiol Biotechnol, 77(4):955–964.

    Article  PubMed  CAS  Google Scholar 

  29. Tyson GW, et al. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428(6978):37–43.

    Article  PubMed  CAS  Google Scholar 

  30. Dinsdale EA, et al. (2008) Functional metagenomic profiling of nine biomes. Nature, 455(7214):830.

    Article  CAS  Google Scholar 

  31. Poinar HN, et al. (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science, 311(5759):392–394.

    Article  PubMed  CAS  Google Scholar 

  32. Products and solutions: System workflow. (2009) [http://www.454.com/products-solutions/how-it-works/index.asp].

  33. Products and solutions: Multi span paired end reads. (2009) [http://www.454.com/products-solutions/experimental-design-options/multi-span-paired-end-reads.asp].

  34. Breitbart M, et al. (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A, 99(22):14250–14255.

    Article  PubMed  CAS  Google Scholar 

  35. Wommack KE, Bhavsar J, Ravel J. (2008) Metagenomics: read length matters. Appl Environ Microbiol, 74(5):1453–1463.

    Article  PubMed  CAS  Google Scholar 

  36. Blow N. (2008) Metagenomics: exploring unseen communities. Nature, 453(7195):687–690.

    Article  PubMed  CAS  Google Scholar 

  37. Publications and resources. (2009) [http://www.454.com/publications-and-resources].

  38. Mardis ER. (2008) The impact of next-generation sequencing technology on genetics. Trends Genet, 24(3):133–141.

    Article  PubMed  CAS  Google Scholar 

  39. Mavromatis K, et al. (2007) Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Methods, 4(6):495–500.

    Article  PubMed  CAS  Google Scholar 

  40. Raes J, Foerstner KU, Bork P. (2007) Get the most out of your metagenome: computational analysis of environmental sequence data. Curr Opin Microbiol, 10(5):490–498.

    Article  PubMed  CAS  Google Scholar 

  41. Besemer J, Borodovsky M. (1999) Heuristic approach to deriving models for gene finding. Nucleic Acids Res, 27(19):3911–3920.

    Article  PubMed  CAS  Google Scholar 

  42. Karlin S. (2001) Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol, 9(7):335–343.

    Article  PubMed  CAS  Google Scholar 

  43. Noguchi H, Park J, Takagi T. (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res, 34(19):5623–5630.

    Article  PubMed  CAS  Google Scholar 

  44. Hoff KJ, et al. (2008) Gene prediction in metagenomic fragments: a large scale machine learning approach. BMC Bioinformatics, 9:217.

    Article  PubMed  Google Scholar 

  45. Venter J, et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304(5667):66–74.

    Article  PubMed  CAS  Google Scholar 

  46. Yooseph S, Li W, Sutton G. (2008) Gene identification and protein classification in microbial metagenomic sequence data via incremental clustering. BMC Bioinformatics, 9:182.

    Article  PubMed  Google Scholar 

  47. Krause L, et al. (2006) Finding novel genes in bacterial communities isolated from the environment. Bioinformatics, 22(14):e281–e289.

    Article  PubMed  CAS  Google Scholar 

  48. Markowitz VM, et al. (2008) IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res, 36(Database issue):D534–D538.

    Google Scholar 

  49. Overbeek R, et al. (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res, 33(17):5691–5702.

    Article  PubMed  CAS  Google Scholar 

  50. Bowler C, et al. (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456(7219):239–244.

    Article  PubMed  CAS  Google Scholar 

  51. Krause L, et al. (2008) Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res, 36(7):2230–2239.

    Article  PubMed  CAS  Google Scholar 

  52. Swithers KS, Gogarten JP, Fournier GP. (2009) Trees in the web of life. J Biol, 8(6):54.

    Article  PubMed  Google Scholar 

  53. Chatterji S, et al. (2008) CompostBin: A DNA composition-based algorithm for binning environmental shotgun reads. Res Comput Mol Biol, 17–28.

    Google Scholar 

  54. McHardy AC, et al. (2007) Accurate phylogenetic classification of variable-length DNA fragments. Nat Methods, 4(1):63–72.

    Article  PubMed  CAS  Google Scholar 

  55. Brady A, Salzberg SL. (2009) Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat Methods, 6(9):673–676.

    Article  PubMed  CAS  Google Scholar 

  56. Altschul S, et al. (1990) Basic local alignment search tool. J Mol Biol, 215(3):403–410.

    PubMed  CAS  Google Scholar 

  57. Legendre P, Legendre L. (1998) Numerical Ecology. 2nd ed. Elsevier, Amsterdam.

    Google Scholar 

  58. McArdle B, Anderson M. (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology, 82(1):290–297.

    Article  Google Scholar 

  59. Zapala MA, Schork NJ. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc Natl Acad Sci U S A, 103(51):19430–19435.

    Google Scholar 

  60. Gianoulis TA, et al. (2009) Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc Natl Acad Sci U S A, 106(5):1374–1379.

    Article  PubMed  CAS  Google Scholar 

  61. Richter DC, et al. (2008) MetaSim: a sequencing simulator for genomics and metagenomics. PLoS One, 3(10):e3373.

    Article  PubMed  Google Scholar 

  62. Tyson G, et al. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428(6978):37–43.

    Article  PubMed  CAS  Google Scholar 

  63. Applications, C.o.M.C.a.F. (2007) The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. National Research Council.

    Google Scholar 

  64. Tyson GW, et al. (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol, 71(10):6319–6324.

    Google Scholar 

  65. Sogin ML, et al. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A, 103(32):12115–12120.

    Article  PubMed  CAS  Google Scholar 

  66. Genomes OnLine Database: Metagenome Projects. (2009) [http://www.genomesonline.org/gold.cgi?want=Metagenomes].

  67. Martin-Cuadrado AB, et al. (2007) Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS ONE, 2(9):e914.

    Article  PubMed  Google Scholar 

  68. Dinsdale EA, et al. (2008) Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE, 3(2):e1584.

    Article  PubMed  Google Scholar 

  69. Frias-Lopez J, et al. (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci U S A, 105(10):3805–3810.

    Article  PubMed  CAS  Google Scholar 

  70. Beja O, et al. (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science, 289(5486):1902–1906.

    Article  PubMed  CAS  Google Scholar 

  71. Gomez-Consarnau L, et al. (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature, 445(7124):210–213.

    Article  PubMed  CAS  Google Scholar 

  72. Singh BK, et al. (2009) Soil genomics. Nat Rev Micro, 7(10):756.

    Article  CAS  Google Scholar 

  73. Roesch LF, et al. (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J, 1(4):283–290.

    PubMed  CAS  Google Scholar 

  74. Gans J, Wolinsky M, Dunbar J. (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 309(5739):1387–1390.

    Article  PubMed  CAS  Google Scholar 

  75. Vogel TM, et al. (2009) TerraGenome: a consortium for the sequencing of a soil metagenome. Nat Rev Micro, 7(4):252.

    Article  CAS  Google Scholar 

  76. Baveye PC. (2009) To sequence or not to sequence the whole-soil metagenome? Nat Rev Micro, 7(10):756.

    Article  CAS  Google Scholar 

  77. Fierer N, Jackson RB. (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A, 103(3):626–631.

    Article  PubMed  CAS  Google Scholar 

  78. Schloss PD, Handelsman J. (2006) Toward a census of bacteria in soil. PLoS Comput Biol, 2(7):e92.

    Article  PubMed  Google Scholar 

  79. Fierer N, et al. (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol, 73(21):7059–7066.

    Article  PubMed  CAS  Google Scholar 

  80. Kielak A, et al. (2009) Phylogenetic diversity of Acidobacteria in a former agricultural soil. ISME J, 3(3):378–382.

    Article  PubMed  CAS  Google Scholar 

  81. Rondon MR, et al. (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol, 66(6):2541–2547.

    Article  PubMed  CAS  Google Scholar 

  82. Tringe S, et al. (2005) Comparative metagenomics of microbial communities. Science, 308(5721):554–557.

    Article  PubMed  CAS  Google Scholar 

  83. van Elsas JD, et al. (2008) The metagenomics of disease-suppressive soils – experiences from the METACONTROL project. Trends Biotechnol, 26(11):591–601.

    Article  PubMed  Google Scholar 

  84. Pang H, et al. (2009) Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr Microbiol, 58(4):404–408.

    Article  PubMed  CAS  Google Scholar 

  85. D’Costa VM, et al. (2006) Sampling the antibiotic resistome. Science, 311(5759):374–377.

    Article  PubMed  Google Scholar 

  86. D’Costa VM, Griffiths E, Wright GD. (2007) Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol, 10(5):481–489.

    Article  PubMed  Google Scholar 

  87. Zhang K, et al. (2009) Identifying natural product biosynthetic genes from a soil metagenome by using T7 phage selection. Chembiochem, 10(16):2599–2606.

    Article  PubMed  CAS  Google Scholar 

  88. Morimoto S, Fujii T. (2009) A new approach to retrieve full lengths of functional genes from soil by PCR-DGGE and metagenome walking. Appl Microbiol Biotechnol, 83(2):389–396.

    Article  PubMed  CAS  Google Scholar 

  89. Chen IC, et al. (2009) Isolation and characterization of a novel lysine racemase from a soil metagenomic library. Appl Environ Microbiol, 75(15):5161–5166.

    Article  PubMed  CAS  Google Scholar 

  90. Turnbaugh PJ, et al. (2007) The human microbiome project. Nature, 449(7164):804–810.

    Article  PubMed  CAS  Google Scholar 

  91. Gordon JI. (2005) Extending our view of self: the Human Gut Microbiome Initiative (HGMI). [http://www/genome.gov/Pages/Research/Sequencing/SeqProposals/HGMISeq.pdf].

  92. Gao Z, et al. (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A, 104(8):2927–2932.

    Article  PubMed  CAS  Google Scholar 

  93. Eckburg PB, et al. (2005) Diversity of the human intestinal microbial flora. Science, 308(5728):1635–1638.

    Article  PubMed  Google Scholar 

  94. Hyman RW, et al. (2005) Microbes on the human vaginal epithelium. Proc Natl Acad Sci U S A, 102(22):7952–7957.

    Article  PubMed  CAS  Google Scholar 

  95. Pei Z, et al. (2004) Bacterial biota in the human distal esophagus. Proc Natl Acad Sci U S A, 101(12):4250–4255.

    Article  PubMed  CAS  Google Scholar 

  96. Kurokawa K, et al. (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res, 14(4):169–181.

    Article  PubMed  CAS  Google Scholar 

  97. Qin J, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464:59–67.

    Article  PubMed  CAS  Google Scholar 

  98. Woyke T, et al. (2009) Assembling the marine metagenome, one cell at a time. PLoS ONE, 4(4):e5299.

    Article  PubMed  Google Scholar 

  99. Lasken RS. (2007) Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol, 10(5):510–516.

    Article  PubMed  CAS  Google Scholar 

  100. Eid J, et al. (2009) Real-time DNA sequencing from single polymerase molecules. Science, 323(5910):133–138.

    Article  PubMed  CAS  Google Scholar 

  101. Gomez-Alvarez V, Teal TK, Schmidt TM. (2009)Systematic artifacts in metagenomes from complex microbial communities. ISME J, 3(11):1314–1317.

    Article  PubMed  Google Scholar 

  102. Kunin V, et al. (2010) Wrinkles in the rare biosphere: pyrosequencing errors lead to artificial inflation of diversity estimates. Environ Microbiol, 12(1):118–123.

    Article  PubMed  CAS  Google Scholar 

  103. Editorial. (2009) Metagenomics vs Moore's Law. Nat Methods, 6(9):623.

    Google Scholar 

  104. Fox S, Filichkin S, Mockler TC. (2009) Applications of Ultra-High-Throughput Sequencing. In Methods Molecular Biology, Humana Press, Clifton, NJ, 79–108.

    Google Scholar 

  105. Blazej RG, Kumaresan P, Mathies RA. (2006) Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proc Natl Acad Sci U S A, 103(19):7240–7245.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Science (BER), U.S. Department of Energy, Cooperative Agreement No. De-FC02-02ER63453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon J. Williamson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Williamson, S.J., Yooseph, S. (2012). From Bacterial to Microbial Ecosystems (Metagenomics). In: van Helden, J., Toussaint, A., Thieffry, D. (eds) Bacterial Molecular Networks. Methods in Molecular Biology, vol 804. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-361-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-361-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-360-8

  • Online ISBN: 978-1-61779-361-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics